Все о тюнинге авто

Выбор огнетушащих веществ и средств пожаротушения. Характеристика некоторых огнетушащих веществ Применение огнетушащих веществ

Предполагает использование широкого спектра веществ, благодаря которым реализуется борьба с огнем. Традиционно главным веществом такого рода считается вода. Действительно, это наиболее популярное наполнение противопожарных установок, но далеко не во всех случаях этот способ оказывается эффективен. Поэтому в рабочий арсенал пожарных служб вводятся и другие виды огнетушащих веществ, под свойства которых разрабатываются и обслуживающие технические средства. Так появляются все новые порошковые компоненты, жидкостные составы и аэрозоли, газовые и другие варианты веществ, позволяющих успешно бороться с пламенем.

Классификации огнетушащих веществ

Базовый принцип разделения огнетушащих веществ основывается на характере воздействия на огонь. Наиболее распространенным способом такого воздействия является охлаждение зоны горения. В процессе тушения осуществляется подача активных с точки зрения прекращения огня материалов. При этом сотрудники пожарной службы должны по возможности перемешивать элементы конструкций и разбирать горящие материалы, позволяя эффективнее охлаждаться пораженным поверхностям. Следующий принцип основывается на разбавлении реагирующих элементов. В данном случае огнетушащие вещества представляют собой легкоиспаряющиеся или разлагающиеся покрытие которыми способствует прекращению огня. Также распространены изолирующие материалы, которые воздействуют на активность в зоне горения путем создания специальных барьеров, перемычек и т. д.

Существует и другая классификация огнетушащих материалов, которая основывается на физическом состоянии вещества. В частности, выделяют жидкие, газообразные, сыпучие, твердые, а также тканевые наполнители пожарных установок. Стоит отметить, что принадлежность наполнителей к разным группам в соответствии с данной классификацией никак не связывается с упомянутой выше системой разделения. То есть классификация огнетушащих веществ по принципу воздействия на зону пожара может допускать вхождение в одну из категорий двух и более материалов с разными физико-химическими свойствами.

Охлаждающие вещества

Теоретически, горение можно прекратить, если на высокой скорости обеспечить отвод теплового выделения. Реализовать такой принцип можно за счет использования хладагентов, которые посредством охлаждения регулируют процесс теплоотвода, сводят к минимуму активность источника горения. Классическим представителем группы охлаждающих материалов является вода - огнетушащее вещество, которое обладает высокой теплоемкостью, доступностью и химической инертностью.

Как и у всех универсальных материалов, у данной жидкости есть недостатки. В первую очередь вода отличается повышенной электропроводностью, что само по себе накладывает серьезные ограничения на ее применение. Ситуация усугубляется, когда жидкость смешивают с другими добавками, увеличивающими способность к проводке тока. Но и это еще не все недостатки. Вода также обладает слабо выраженными способностями к адгезии относительно горящих материалов, из-за чего, собственно, в нее и вносят специальные добавки. В итоге получаются уже другие огнетушащие вещества, представляющие собой различные смеси и растворы - как правило, на соляной основе.

Изолирующие вещества

Самый распространенный материал этой группы - пена. Изолирующее воздействие способствует эффективному подавлению пламени с минимальными потерями и риском в плане токсической безопасности. Структуру пены формирует из жидких пузырьков, которые имеют газовое наполнение. Зачастую такие вещества оказывают двойное воздействие - изолирующее и охлаждающее. При этом далеко не все пенные огнетушащие вещества могут использоваться в тушении пожаров. Например, разведенный в домашних условиях мыльный раствор не даст никакого эффекта, поскольку в огне структура эмульсии мгновенно будет разрушена. Поэтому используются особые растворы, обладающие относительно прочной структурой пузырей, способной выдерживать тепловые и механические воздействия. В целях укрепления пенного вещества в составы растворов добавляются специальные стабилизаторы. Также с пенообразователем сочетают и применение воздушных эмульсий.

В категорию изолирующих материалов стоит отнести и порошки, предназначенные для тушения пожаров. Хотя такие вещества являются универсальными и оказывают многофакторное подавляющее воздействие на огонь, все-таки на первый план выходит способность к изоляции источников огня. В таких целях, к примеру, используют огнетушащий порошок на основе щелочных металлов, карбоната, бикарбоната, аммонийных солей и других соединений. Также подобные вещества используются целенаправленно в тушении электрооборудования.

Вещества разбавления

Это обширная группа веществ, которые в основном ориентированы на использование в особых условиях пожаротушения. Для прекращения огня таким способом используют материалы, способные или разбавлять горючие пары с газами до состояния негорючей концентрации, или минимизировать содержание кислорода в воздухе до уровня, когда перестает поддерживаться горение. При этом могут применяться различные подходы к подаче материалов - например, в общую зону пожара, в воздух или целенаправленно в объект горения.

Согласно практике применения, самым популярным средством этого типа является углекислый газ, обеспечивающий наиболее эффективное прекращение горения на пожаре. Огнетушащие вещества в виде азота и водяного пара также оказываются полезными в зависимости от условий применения. Например, водяной пар используют в основном при в закрытых помещениях и труднодоступных местах. В ходе обработки объекта водяной пар наполняет собой все помещение, разбавляя и вытесняя из него воздушные массы. Таким образом активное вещество препятствует горению, не оказывая вредного воздействия на находящихся в помещении людей. Кроме того, иногда обеспечивается двойной эффект тушения пламени паром. Во-первых, действует само облако, замещающее воздух. Во-вторых, капли, образуемые от пара, испаряются и поглощают тепло от источника пожара.

Химически активные вещества

Это категория веществ, которые оказывают тормозящее действие на процесс горения. Принцип тушения основывается на химическом воздействии средства на зону пожара. При контакте огнетушащего вещества с целевым объектом происходит взаимодействие с активными центрами окисляющей реакции, в результате чего остаются негорючие или малоактивные соединения, прекращающие реакцию горения.

Обеспечить такой эффект способны галоидированные углеводороды. Это огнетушащие вещества с ингибирующим действием, которые тормозят активность процесса горения. Но важно учитывать, что подобные материалы опасны токсическим воздействием. Что касается эффективности тушения, то это, возможно, самая лучшая группа материалов для пожаротушения. Но, опять же, нежелательная химическая активность существенно ограничивает область применения таких веществ. Если говорить о конкретных соединениях, то ингибирующие вещества могут быть представлены фреонами и другими галоидопроизводными соединениями на основе этана и метана. Специалисты называют такие материалы хладонами, приписывая им особые обозначения с указанием химического состава. В соответствии с маркировкой определяются и допустимые условия применения веществ.

Мобильные и стационарные средства пожаротушения

Сама по себе эффективность веществ, которые теоретически могут оказать помощь в деле борьбы с огнем, минимальна, если нет налаженной системы подачи материала. Для этой цели используются мобильные и стационарные установки, осуществляющие введение или распыление активного вещества. К мобильным средствам можно отнести пожарные автомобили, которые эксплуатируются службами охраны. Впрочем, это не только обычные машины с личным составом. В эту же категорию можно включить поезда, самолеты и морские суда, выполняющие ликвидацию огня в соответствующих условиях. Также распространены и стационарные установки пожаротушения, которые предназначены для выпуска огнетушащего вещества. К примеру, такие системы чаще всего используются именно в закрытых помещениях и работают с разбавляющими активными материалами.

Среди основных задач, которые выполняют стационарные установки, можно отметить ликвидацию или, как минимальную цель, локализацию пожара. При этом существует множество вариантов конструкционных исполнений подобных комплексов. В частности, различают модульные и агрегатные системы. Также на фоне широкой автоматизации систем безопасности отходят от ручного управления и установки пожаротушения, дополняясь современной электроникой и новейшими системами удаленного контроля.

Применение огнетушащих веществ в лафетных установках

Лафетные средства подачи огнетушащих материалов, как правило, проектируются еще на этапе строительства объекта, в котором будет осуществлен их монтаж. Дело в том, что подобные системы являются наиболее требовательными к коммуникационному обеспечению, поэтому изначальный расчет их местоположения и установки особенно важен. Обычно такие агрегаты применяются на производственных объектах, где также размещаются и емкости для огнетушащих веществ конкретного типа. Это могут быть, к примеру, резервуары с водой или баллоны с пенным или газовым наполнителем. Некоторые модификации, к слову, не предназначены именно для полной ликвидации пламени. Их основные задачи сводятся к защите производственного оборудования или коммуникаций - например, путем водяного орошения.

Установки такого типа могут различаться по способу устройства. Далеко не всегда лафетные конструкции имеют стационарное положение. Это могут быть мобильные с дополнением в виде программного или дистанционного управления. Конечно, распространены и стационарные установки, подача огнетушащих веществ в которых зачастую осуществляется через общие инженерные сети и коммуникации. Такое подключение позволяет не тратить время на организацию работающей инфраструктуры и моментально приступать к процессу пожаротушения.

Автоматика в установках пожаротушения

Современные автоматические противопожарные установки позволяют, независимо от участия человека, контролировать факторы, свидетельствующие об опасности пожара, и своевременно начинать процесс тушения. Обычно в момент превышения заложенных в программу значений начинается подача активного вещества и вместе с этим срабатывает сигнализация. При этом существуют разные подходы к средствам управления такими системами. Например, спринклерные модели полностью автоматизированы, но есть и другие системы, в которых предусматривается ручное управление. Так, огнетушащее вещество в установках может выпускаться и в автоматическом режиме, и по команде оператора через пульт управления. Но такая система контроля уже зависит от типа самой установки - модульные ориентируются на большую автономию, в то время как централизованные допускают максимальный спектр подходов к управлению.

Важно отметить и факторы безопасности, которые не всегда могут учитываться при эксплуатации автоматических систем. Оснащение подобными установками себя оправдывает лишь в тех случаях, когда ликвидация очагов возгорания первичным инструментарием невозможна. Также на некоторых производственных объектах персонал обслуживает системы безопасности не в круглосуточном режиме. Очевидно, что в таких ситуациях не обойтись без автоматического средства борьбы с огнем. Другое дело, что для минимизации рисков следует изначально сделать правильный выбор огнетушащего вещества, автоматическая подача которого как максимум повлечет лишь запланированный и предварительно рассчитанный ущерб.

Классификация установок по огнетушащему веществу

Для каждого вида установки пожаротушения используется конкретный тип активного вещества. В целях безопасности применение нескольких материалов в одном комплексе практикуется редко. Самой распространенной системой является конструкция с водяным пожаротушением. Особенно распространены дренчерные комплексы, которые используют в целях защиты помещений с высоким риском пожара. Эффективность подобных устройств обусловлена тем, что они могут обеспечивать одновременное орошение всей области охраняемой площадки. В свой состав включают насосное оборудование, панели управления, трубопроводы, емкости для воды, оповещающие устройства и т. д.

Вторым по популярности веществом, которое используется в дренчерных конструкциях, является пена. Такие системы используют для защиты локальных зон в производственных помещениях, предотвращения воспламенения трансформаторов и электроаппаратов. Довольно широко применяются и спринклерные установки с пенным материалом пожаротушения. Кстати, такие агрегаты имеют много схожего с водяными установками за исключением особых подходов к дозированию. Это основные огнетушащие вещества, используемые в стационарных и мобильных средствах борьбы с очагами возгорания, но есть и специализированные газовые системы, порошковые и аэрозольные. Как правило, пожарозащитное оборудование с такими наполнителями используется в особых условиях - например, в местах, где предъявляются повышенные требования к содержанию электрооборудования.

Заключение

При всем многообразии веществ, используемых в современных системах пожаротушения, специалисты по-прежнему не могут назвать универсальный и наиболее эффективный способ борьбы с огнем. Наблюдается довольно четкая сегментация материалов по классам в зависимости от их технико-эксплуатационных качеств. В то же время немаловажную роль играет воздействие огнетушащих веществ на человека и объекты, которые находятся в зоне воспламенения. Например, системы пожаротушения с химическими наполнителями вполне могли бы стать единственным средством подавления огня. Как показывает практика использования, требуется минимальное количество огнетушащего материала такого типа для борьбы с пожарами средних классов.

Но проблема заключается в последствиях, которые влечет использование химически опасных веществ. По этой причине технологи осваивают новые способы пожаротушения, в том числе конструкционные. Эффективно работающее вещество для тушения огня может раскрыть весь свой потенциал лишь в том единственном случае, если была правильно организована система борьбы с очагами воспламенения. И в этом плане стоит отметить важность и базовых установок, которые подают материал для тушения, и способов управления - автоматических или ручных.

Теплофизическое объяснение процесса тушения пожара

Ликвидация горения с физической точки зрения - это воздействие на тепловыделение и теплоотдачу. С уменьшением тепловыделения или с уменьшением теплоотдачи снижается температура и скорость реакции. При введении в зону горения огнетушащих веществ температура может достигнуть значения, при котором горение прекращается. Минимальная температура горения , ниже которой скорость теплоотвода превышает скорость тепловыделения и горение прекращается, называется температурой потухания.

Температура потухания значительно выше температуры самовоспламенения , следовательно, для прекращения горения достаточно понизить температуру зоны реакции ниже температуры потухания, увеличивая интенсивность теплоотвода или уменьшая скорость тепловыделения. Так, если изменить концентрацию кислорода в воздухе, добавив к нему негорючий газ, то скорость выделения теплоты единицы площади поверхности зоны реакции будет уменьшаться и температура горения понизится. При определенной концентрации негорючего газа температура горения опустится ниже температуры потухания и горение прекратится (рис.1. ) .

Рис.1. Зависимость тепловыделения и теплоотвода от температуры.
1 - кривая тепловыделения: 1" ,1"" ,1""" – кривые тепловыделения при уменьшении его скорости; 2 – прямая теплоотвода; О – начало окисления: П – точка, соответствующая температуре потухания; Г – точка, соответствующая температуре горения; Тп – температура потухания; Тг – температура горения.

В связи с уменьшением концентрации кислорода в воздухе понижается кривая 1 . Если при горении тепловое равновесие установилось в точке Г (пересечение прямой теплоотвода 2 и кривой тепловыделения 1 ), то при уменьшении скорости тепловыделения и понижении кривой 1 эта точка сместится влево и понизится температура горения. При некоторой скорости тепловыделения прямая теплоотвода 2 в области высоких температур только коснется кривой тепловыделения 1 в точке П . При дальнейшем снижении скорости выделения теплоты прямая теплоотвода расположится выше кривой скорости тепловыделения, и процесс горения перейдет в область окисления (точка О). Следовательно, температура горения Тп является критической , т.е. температурой потухания. Таким образом снизить температуру горения и прекратить горение можно как увеличением скорости теплоотвода, так и уменьшением скорости тепловыделения .

Этого можно достигнуть:


Рис.2. Схема прекращения горения

Способы прекращения горения

Способы прекращения горения представлены на рис.3 .

Каждый из способов прекращения горения можно выполнить различными приемами или их сочетанием. Например, создание изолирующего слоя на горящей поверхности легковоспламеняющейся жидкости может быть достигнуто подачей пены через слой горючего, с помощью пеноподъемников , навесными струями и т.п. .


Рис.3. Классификация способов прекращения горения.

Классификация огнетушащих веществ

На основании указанных способов прекращения горения, можно классифицировать огнетушащие вещества следующим образом:

Вещества и материалы, на которые нельзя подавать воду и ее растворы

Вещество, материал Степень опасности
Азид свинца Взрывается при увеличении влажности до 30%
Алюминий, магний, цинк, цинковая пыль При горении разлагают воду на кислород и водород
Битум Подача компактных струй воды ведет к выбросу и усилению горения
Гидриды щелочных и щелочноземельных металлов
Гидросульфит натрия Самовозгорается и взрывается от действия воды
Гремучая ртуть Взрывается от удара компактной водяной струи
Железо кремнистое (ферросилиций) Выделяется фосфористый водород, самовоспламеняющийся на воздухе
Калий, кальций, натрий, рубидий, цезий металлические Реагируют с водой с выделением водорода, возможен взрыв
Кальций и натрий (фосфористые) Реагируют с водой с выделением фосфористого водорода, самовоспламеняющегося на воздухе
Калий и натрий (перекиси) При попадании воды возможен взрывообразный выброс с усилением горения
Карбиды алюминия, бария и кальция Разлагаются с выделением горючих гaзов, возможен взрыв
Карбиды щелочных металлов При контакте с водой взрываются
Магний и его сплавы При горении разлагают воду на водород и кислород
Метафос С водой реагирует с образованием взрывоопасного вещества
Натрий сернистый и гидросернокислый Сильно разогревается (свыше 400 °С), может вызвать возгорание горючих веществ, а также ожог при попадании на кожу, сопровождающийся труднозаживающими язвами

Огнетушащие вещества

Наименование параметра Значение
Тема статьи: Огнетушащие вещества
Рубрика (тематическая категория) Технологии

Основные принципы прекращения горения

Принципы прекращения горения. Огнетушащие вещества.

1. Охлаждение реагирующих веществ.

2. Изоляция реагирующих веществ от зоны горения.

3. Разбавление реагирующих веществ до негорючих концентраций или концентраций, неподдерживающих горение. (уменьшение содержания горючего компонента)

4. Торможение скорости химических реакций горения (ингибирование)

Огнетушащие вещества, которые применяют для тушения пожаров, как правило, обладают комбинированным воздействием на процесс горения.

В качестве данных веществ используют воду, воздушномеханическую и химическую пены, инœертные газы, пар, порошки, хладоны, аэрозоли.

Жидкие огнегасительные вещества

Для тушения пожаров в качестве жидкого огнегасительного средства широкое распространение получила вода.

Она обладает большой теплоемкостью, значительным увеличением объёма при парообразовании (1 л в – 1700 л пара).

По этой причине, покрывая поверхность горящих веществ, вода поглощает много тепла, охлаждая их до температуры, при которой горение прекращается, а образующийся пар изолирует на неĸᴏᴛᴏᴩᴏᴇ время горящую поверхность от кислорода воздуха. Вместе с тем, струя воды (подается под напором) механически сбивает пламя с горящих поверхностей.

Для огнегасительных свойств воды применяют специальные вещества – смачиватели (ПВА), которые позволяют сократить расход воды в 2 – 2,5 раза.

Тушение пожаров распыленной водой также повышает ее эффективность (распыленная вода интенсивно охлаждает поверхность, а образующийся пар препятствует проникновению кислорода).

При этом крайне важно учитывать следующие ее отрицательные свойства, как огнегасительного вещества:

1. Не тушить электроустановку, находящуюся под напряжением! Вода является проводником электричества, в связи с этим, прежде чем приступить к тушению горящего электрооборудования, крайне важно отключить ток.

2. Нельзя тушить водой вещества, воспламеняющиеся или реагирующие при соприкосновении с ней с выделœением взрывоопасных газов (карбиды щелочных металлов).

3. Нельзя тушить огнеопасные жидкости, имеющие плотность, меньшую чем у воды, т.к. они всплывают на поверхность воды, увеличивая площадь горения.

4. Нельзя тушить битум и жиры (происходит их выброс и разбрызгивание)

Пенообразные огнегасительные вещества

Представляют собой смесь газа (углекислый газ или воздух) с жидкостью (водные растворы солей, кислот). Для устойчивости пены в нее вводят ПВА.

Огнегасительный эффект пены связан с образованием над горючей жидкостью экрана, который тормозит скорость образования горючих газов и паров, а также снижает концентрацию кислорода в зоне горения. Наибольшее распространение получили два вида пен:

1) Химическая пена (образуется в результате химической реакции, связанной с выделœением газа). Для этой цели используют специальный порошок сернокислый алюминий + бикарбонат натрия Al 2 (SO 4) 3 + NaHCO 3 и ПАВ.

2) Воздушно-механическая пена. Образуется при механическом смешении воздуха, воды и ПАВ. Применяют для тушения нефтепродуктов и твердых горючих веществ.

Пены характеризуются кратностью (объем пены к объёму жидкости) и временем ее разрушения.

Газообразные огнегасительные вещества

В качестве газов для тушения применяют двуокись углерода СО 2 (углекислый газ или диоксид), азот, аргон и водяной пар.
Размещено на реф.рф
Их действие основано на разбавлении горючей парогазовой среды, ᴛ.ᴇ. снижении концентрации кислорода до значений, при которых реакция горения прекращается.

1) Двуокись углерода применяют для тушения эл. Оборудования, двигателœей внутреннего сгорания, в случаях, когда применение воды может вызвать повреждение аппаратуры и приборов.

Это газ без цвета и запаха, в 1,5 раз тяжелœее воздуха. Быстро испаряется, за счёт чего вызывает охлаждение зоны горения, а также разбавляет горючие газы и кислород в зоне горения. Нельзя использовать при горении К, Na, щелочноземельных металлов.

2) Азот. Снижает концентрацию кислорода и горючих газов, не поддерживает горение.

Но первые две группы веществ нельзя использовать для веществ способных тлеть.

3) Водяной пар.
Размещено на реф.рф
Эффект состоит в разбавлении кислорода.

4) Огнетушащий состав получается сжиганием твердотопливной композиции, которая может гореть без доступа воздуха. Образуемый в качестве продукта сгорания аэрозоль состоит из газовой фазы (преимущественно диоксида углерода) и взвешенных частиц (наподобие огнетушащих порошков, только с еще более мелкими размерами частиц, что повышает огнетушащую способность).

5) Хладоны (галогеноуглеводороды) нахзывают торможение реакций горения, тюе. Являются ингибиторами. Являются диалектриками и могут использоваться для тушения электрооборудования. Имеют низкую температуру замерзания и могут использоваться при отрицательных температурах. При этом опасность представляет токсическое воздействие хладонов и продуктов их термического разложения на организм человека.

Твердые огнегасительные вещества

Применяют для ликвидации загорания щелочных металлов, не поддающихся тушению другими огнегасительными веществами, а также для тушения газового пламени.

Представляют собой порошки различных составов (кальцинированная сода, графит, стеариновая кислота͵ стеараты желœеза и алюминия).

Огнегасительное действие порошков состоит по сути в том, что они разлагаются в зоне горения с образованием углекислого газа, который разбавляет кислород и препятствует доступу кислорода в зону горения.

Механизм их действия состоит в ингибировании горения, ᴛ.ᴇ. в торможении скорости химических реакций горения.

Выбор способа тушения и способа подачи огнетушащего вещества определяется видом горящего вещества, материала или оборудования и условиями протекания пожара.

Огнетушащие вещества - понятие и виды. Классификация и особенности категории "Огнетушащие вещества" 2017, 2018.

  • - Огнетушащие вещества разбавления.

    Огнетушащие вещества, классификация, область применения Пожарная характеристика производственных процессов отрасли Пожарно-профилактические мероприятия выполняют в процессе проектирования, строительства и эксплуатации предприятия. ... .


  • - Огнетушащие вещества

    Способы пожаротушения В соответствии с основными условиями (составляющими), которые определяют возможность возникновения процесса горения, для его прекращения могут быть использованы следующие способы пожаротушения: 1) охлаждение очага (зоны) горения... .


  • - Средства пожаротушения (огнетушащие вещества и составы)

    Классификация помещений по степени пожароопасности В основу классификации зданий и сооружений положены основные пожарные показатели применяемых в-в и материалов с учетом их кол-ва. В соответствии с «Общесоюзными нормами технолог.проектирования» (1986г.) здания и... .


  • -

    В качествеогнетушащих веществ используются: - вода или вода со смачивателями и другими добавками; - огнетушащая пена (воздушно-механическая и химическая); - твердая углекислота; - инертные газы (главным образом СО2 и N2), а также водяной пар; - огнетушащие порошки; -... .


  • - Огнетушащие вещества и средства тушения пожаров

    Процесс тушения пожаров подразделяется на локализацию и ликвидацию огня. Локализация – это ограничение распространения огня и создание условий для его ликвидации. Ликвидация - это полное прекращение горения и исключение возможности повторного возгорания. Эти цели... .


  • - Рекомендуемые огнетушащие вещества в зависимости от классификации пожаров.

    Класс пожара Характеристика горючей среды или горящего объекта Рекомендуемые огнетушащие вещества А Обычные твёрдые горючие материалы (дерево, уголь, бумага, резина, текстильные материалы и др.). Все виды огнетушащих веществ (прежде всего вода). ... .


  • Огнетушащие средства по доминирующему принципу прекращения горения подразделяются на четыре группы: охлаждающего, изолирующего, разбавляющего и ингибирующего действия.

    Наиболее распространенные огнетушащие средства, относящиеся к конкретным принципам прекращения горения, приведены ниже.

    Огнетушащие средства, применяемые для тушения пожаров.

    Огнетушащие средства охлаждения

    Вода, раствор воды со смачивателем, твердый диоксид углерода (углекислота в снегообразном виде), водные растворы солей.

    Огнетушащие средства изоляции

    Огнетушащие пены: химическая, воздушно-механическая; Огнетушащие порошковые составы (ОПС); ПС, ПСБ-3, СИ-2, П-1А; негорючие сыпучие вещества: песок, земля, шлаки, флюсы, графит; листовые материалы, покрывала, щиты.

    Огнетушащие средства разбавления

    Инертные газы: диоксид углерода, азот, аргон, дымовые газы, водяной пар, тонкораспыленная вода, газоводяные смеси, продук­ты взрыва ВВ, летучие ингибиторы, образующиеся при разложении галоидоуглеродов.

    Огнетушащие средства химического торможения реакции горения

    Галоидоуглеводороды бромистый этил, хладоны 114В2 (тетрафтордибромэтан) и 13В1 (трифторбромэтан); составы на основе галоидоуглеводородов 3,5; 4НД; 7; БМ, БФ-1,БФ-2; водобромэтиловые растворы (эмульсии); огнетушащне порошковые составы.

    Вода. Удельная теплоемкость, равная 4,19 Дж/(кг´ град), придает воде хорошие охлаждающие свойства. В условиях тушения пожара превращаясь в пар (из 1 л образуется 1700 л пара), вода разбавляет реагирующие вещества. Высокая теплота парообразования воды (2236 кДж/кг) позволяет отнимать большое количество тепла в процессе тушения пожара. Низкая теплопроводность способствует со зданию на поверхности горящего материала надежной тепловой изоляции. Значительная термическая стойкость воды (она разлагается на кислород и водород при температуре 1700 о С) способствует тушению большинства твердых материалов, а способность растворят некоторые жидкости (спирты, ацетон, альдегиды, органические кислоты) позволяет разбавлять их до негорючих концентраций. Вода растворяет некоторые пары и газы, поглощает аэрозоли. Она доступна для целей пожаротушения, экономически целесообразна, инертна по отношению к большинству веществ и материалов, имеет не значительную вязкость и несжимаемость. При тушении пожаров воду используют в виде компактных, распыленных и тонкораспыленных струй. Однако вода характеризуется и отрицательными свойствами: электропроводна (см. гл. 8), имеет большую плотность (не применяется для тушения нефтепродуктов как основное огнетушащее средство), способна вступать в реакцию с некоторыми веществами и бурно реагировать с ними (см. ниже), имеет низкий коэффициент использования в виде компактных струй, сравнительно высокую температуру замерзания (затрудняется тушение в зимнее время) и высокое поверхностное натяжение-72,8´ 10 3 Дж/м 2 (является показателем низкой смачивающей способности воды).

    Вода со смачивателем. Добавка смачивателей позволяет значительно снизить поверхностное натяжение воды (до 36,4´ 10 3 Дж/м 2 . В таком виде она обладает хорошей проникающей способностью, засчет чего достигается наибольший эффект в тушении пожаров, особенно при горении волокнистых материалов, торфа, сажи. Водные растворы смачивателей позволяют уменьшить расход воды на 30...50%, а также продолжительность тушения пожара. Виды смачивателей и их оптимальная концентрация приведены в табл. 2.1.

    Твердый диоксид углерода (углекислота в снегообразном виде) тяжелее воздуха в 1,53 раза, без запаха, плотность 1,97кг/м 3 . При нагревании переходит в газообразное вещество, минуя жидкую фазу, что позволяет применять его для тушения материалов, которые портятся при смачивании (из 1 кг углекислоты образуется 500 газа). Теплота испарения при -78,5 °С составляет 572,75 Дж/кг. Неэлектропроводен, не взаимодействует с горючими веществами материалами.

    Твердый диоксид углерода имеет широкую область применения. Не используют его для тушения загоревшихся магния и его сплавов, металлического натрия и калия, так как при этом происходит разло­жение углекислоты с выделением атомарного кислорода. Твердый диоксид углерода используют при тушении горящих электроустано­вок, двигателей, при пожарах в архивах, музеях, выставках и дру­гих местах с наличием особых ценностей.

    ТАБЛИЦА 2.1. ОПТИМАЛЬНЫЕ КОНЦЕНТРАЦИИ СМАЧИВАТЕЛЕЙ В ВОДЕ

    Смачиватель

    Оптимальная концентрация

    % к воде

    по массовому содер­жанию

    Смачиватель ДБ

    0,002 – 0,0025

    Сульфанол:

    Некаль НБ

    Вспомогательное вещество:

    Эмульгатор ОП-4

    Пенообразователь:

    ПО-1Д

    Вещества и материалы, при тушении которых опасно применять воду и другие огнетушащие средства на ее основе

    Вещество, материал

    Степень опасности

    Азид свинца

    Взрывается при увеличении влажности до 30%

    Алюминий, магний, цинк, цинковая пыль

    ковая пыль

    При горении разлагают воду на кислород и водород

    Битум

    Подача компактных струй воды ведет к выбросу и усилению горения

    Гидриды щелочных и щелочноземельных металлов

    Гидросульфит натрия

    Самовозгорается и взрывается от действия воды

    Гремучая ртуть

    Взрывается от удара водяной струи

    Железо кремнистое (ферросилиций)

    Выделяется фосфористый водород, самовоспламеняющийся на воздухе

    Калий, кальций, натрий, рубидий, цезий металлические

    Реагируют с водой с выделением водорода, возможен взрыв

    Кальций и натрий (фосфориристые)

    Реагируют с водой с выделением фосфористого водорода, самовоспламеняющегося на воздухе

    Калий и натрий (перекиси)

    При попадании воды возможен взрывообразный выброс с усилением горения

    Карбиды алюминия, бария и

    кальция

    Разлагаются с выделением горючих газов, возможен взрыв

    Карбиды щелочных металлов

    При контакте с водой взрываются

    Магний и его сплавы

    При горении разлагают воду на водород и кислород

    Натрий сернистый и гидросернокислый

    Сильно разогревается (свыше 400 °С), может вызвать возгорание горючих веществ, а также ожог при попадании на кожу, сопровождающийся труднозаживающими язвами

    Негашеная известь

    Реагирует с водой с выделением большого количества тепла

    Нитроглицерин

    Взрывается от удара струи воды

    Селитра

    Подача струн воды в расплав ведет к сильному взрывообразному выбросу и усилению горения

    Серный ангидрид

    При попадании воды возможен взрывообразный выброс

    Сесквилхлорид

    Взаимодействует с водой с образованием взрыва

    Силаны

    Реагируют с водой с выделением водородистого кремния, самовоспламеняющегося на воздухе

    Термит, титан и его сплавы, титан четыреххлористый, электрон

    Реагируют с водой с выделением большого количества теплоты, разлагают воду на кислород водород

    Триэтилалюминий и хлорсульфонова кислота

    Реагируют с водой с образованием взрыва

    Диоксид углерода в состоянии аэрозоля образуется при выпуске из изотермической емкости в атмосферу сжиженного диоксида углерода. После дросселирования (вытекания из насадка ствола) имеет устойчивое состояние, 1 кг аэрозоля при нагревании до 20 °С может поглотить 389,37 кДж теплоты, что эквивалентно охлаждению 5 кг воздуха от 100 до 20 °С.

    Аэрозоль хорошо проникает в мелкие поры и глубокие трещины, может быть эффективно использован при тушении древесины, ткани, бумаги, волокнистых материалов при открытом и скрытом горении, а также пожаров в подвалах, кабельных туннелях, в помещениях с наличием электроустановок, музеев, картинных галерей, книгохранилищ и других объектах.

    Химическая пена получается в пеногенераторах путем смешения пеногенераторных порошков и в огнетушителях при взаимодействии щелочного и кислотного растворов. Состоит из углекислого газа (80% об.), воды (19,7%),пенообразующего вещества (0,3%).

    Обладает высокой стойкостью и эффективностью в тушении многих пожаров. Однако вследствие электропроводности и химической активности химическую пену не применяют для тушения электро- и радиоустановок, электронной техники, двигателей различного назначения, других аппаратов и агрегатов.

    Воздушно-механическая пена (ВМП) получается смешением в пенных стволах или генераторах водного раствора пенообразователя с воздухом. Краткая характеристика пенообразователей приведена ниже. Пена бывает низкой кратности (К< 10), средней (10< К< 200) и высокой (К>200).

    ВМП обладает необходимой стойкостью, дисперстностью, вязкос­тью, охлаждающими и изолирующими свойствами, которые позволяют использовать ее для тушения твердых материалов, жидких веществ и осуществления защитных действий, для тушения пожаров по поверхности и объемного заполнения горящих помещений (пена средней и высокой кратности). Для подачи пены низкой кратности применяют воздушно-пенные стволы СВП (СВПЭ), а для подачи пены средней и высокой кратности - пеногенраторы ГПС.

    Пена средней кратности на основе ПО-1С, применяемая для тушения этилового спирта, эффективна при разбавлении его водой в емкости до 70%, а при использовании ПО-1, ПО-1Д, ПО-2А, ПО-ЗА, ПО-6К и других - до 50%. ВМП менее электропроводна, чем химическая пена, и более электропроводна, чем вода. Поэтому тушение ею электроустановок с помощью ручных средств может производиться после их обесточивания.

    Для получения ВМП используются пенообразователи (ПО). Характеристика наиболее распространенных пенообразователей приведена ниже.

    Водный раствор нейтрализованного керосинового контакта 84±3%, костный клей для стойкости пены 5±1% синтетический этиловый спирт или концентрированный этиленгликоль 11±1%.Температура замерзания не превышает -8 °С. Является основным пенообразующим средством для получения воздушно-механической пены любой кратности.

    При тушении нефтей и нефтепродуктов концентрация водного раствора ПО-1 принимается 6%. При тушении других веществ и материалов используют растворы с концентрацией 2 - 6 %

    ПО-1Д

    Представляет собой ПО-1 на основе детергента Д путем сульфирования сернистым газом фракции керосина с температурой кипения 150 - 300 °С. Полученные натриевые соли разбавляют водой до концентрации 26 - 29% активного вещества. Раствор активного вещества в дальнейшем используют в качестве пенообразователя с температурой замерзания не выше -3 °С. Для получения пены применяют водный раствор ПО-1Д с концентрацией 4 - 6 %

    ПО-1С

    Паста из рафинированного алкиларилсульфоната (РАС) с добавлением концентрированного раствора альгината натрия (3,5 %) и 1 % высшего синтетического мирного спирта фракции С 10 – С 12 . Температура замерзания - 4 °С. Применяют при тушении полярных жидкостей (спирта, эфира и др.). Расчетную концентрацию водного раствора принимают не менее 10 - 12 %

    ПО-2А

    Водный раствор вторичных алкилсульфатов натрия. Выпускается с содержанием активного вещества 30±1 %. Температура замерзания не выше -3 °С. При применении разбавляют водой (1 ч. продукта на 2 ч. воды) с использованием дозирующей аппаратуры, рассчитанной на пенообразователь ПО-1. Для получения пены применяют водный раствор с концентрацией 6 %

    ПО-3А

    Водный раствор смеси натриевых солей вторичных алкилсульфатов. Содержит 26±1 % активного вещества. Температура замерзания не выше -3°С. При применении разбавляют водой в пропорции 1:1 с использованием дозирующей аппаратуры, рассчитанной на пенообразователь ПО-1. Для получения пены применяют водный раствор с концентрацией 4 - 6 %

    ПО-6К

    Изготовляют из кислого гудрона при сульфировани гидроочищенного керосина. Содержит 32 % активного вещества. Температура замерзания не выше -3°С. Для получения пены при тушении нефтепродуктов используют водный раствор с концентрацией 6 %. в других случаях концентрация водного раствора может быт меньше

    ПО-ЗАИ (“Ива”)

    Содержит 25 % синтетического поверхностно-активного вещества и ингибитор коррозии. Температура замерзания - 2 °С. Обладает низкой коррозионной активностью; по отношению к емкостям из малоуглеродистой стали сохраняет пенообразующие свойства при замерзании оттаивании. Хранится в виде концентрата и рабочих растворов. Для получения пены используют водный раствор с концентрацией от 3 % и более.

    “Сампо”

    Состоит из синтетического поверхностно-активного вещества (20%), стабилизатора (15%), антифризной добавки (10%) и вещества, снижающего коррозионное действие состава (0,1 %). Температура застывания -10°С. Для получения пены используют водный раствор с концентрацией 6 %. Применяют при тушении нефти, неполярных нефтепродуктов, резинотехнических изделий древесины, волокнистых материалов, в стационарны системах пожаротушения и для защиты технологических установок

    Огнетушащие порошковые составы (ОПС) являются универсальными и эффективными средствами тушения пожаров при сравнительно незначительных удельных расходах. ОПС применяют для тушения горючих материалов и веществ любого агрегатного состояния, электроустановок под напряжением, металлов, в том числе металлоорганических и других пирофорных соединений, не поддав­шихся тушению водой и пенами, а также пожаров при значительных минусовых температурах. Они способны оказывать эффективные действия на подавление пламени комбинированно: охлаждением (отнятием теплоты), изоляцией (за счет образования пленки при плавлении), разбавлением газообразными продуктами разложения порошка или порошковым облаком, химическим торможением реакции горения.

    Основным недостатком ОПС является склонность их к слеживанию и комкованию. Из-за большой дисперсности ОПС образуют значительное количество пыли, что обусловливает необходимость работы в специальной одежде, а также с предохранительными для органов дыхания и зрения средствами. Виды и краткая характеристика наиболее распространенных отечественных порошков приведен в табл. 2.2.

    ТАБЛИЦА 2.2. ХАРАКТЕРИСТИКА НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ ОГНЕТУШАЩИХ ПОРОШКОВЫХ СОСТАВОВ

    Порошок

    Состав

    Область применения

    ЛСБ-З

    Механическая смесь бикарбоната натрия с химически осаж­денным мелом (углекислым кальцием), тальком и аэросилом АМ-1-300 (кремнийорганическая добавка). Бывают трех марок -А, Б, В.

    Марка А : 97 - 98 % бикарбоната натрия и 1,5...2.5 % аэросила;

    Марка Б : 91 - 94 % бикарбоната натрия, 4...6 % углекислого кальция и 1,5 - 2,5 % аэросила;

    Марка В : 91 - 94 % бикарбоната натрия, 1,5 - 2,5 % аэросила и 4 - 6 % талька

    Для тушения ЛВЖ, ГЖ, растворителей, сжиженных газ газовых фонтанов, электроустановок под напряжением 1000 В. Можно применять для пожаротушения в сочетании огнетушащей пеной.

    99 % фосфорно-аммонийные соли и 1 % аэросила АМ-1-300

    Для тушения твердых горючих материалов (древесины, бумаги, пластмасс, угля и др.), нефтепродуктов, сжиженных газов, газовых фонтанов электроустановок под напряжением до 1000 В.

    Смесь карбоната натрия с графитом и стеаратов тяжелых металлов: 95 - 96 % соды, 1 - 1,5 % графита, улучшающего текучесть; 0,5 - 3 % стеарата металла (магния, цинка, кальция)

    Для тушения горящих щелочных металлов и их сплавов

    Мелкозернистый силикагель марки МСК (50 %), насыщен­ный хладон 114В2 (50 %)

    Для тушения многих горючих веществ, в том числе пирофорных, кремнийорганических алюминийорганических соединений, а также гидридов металлов

    Диоксид углерода (СО) 2 . Горение большинства веществ по принципу разбавления прекращается при снижении содержания кислорода в окружающей среде до концентрации, при которой горение становится невозможным. Исключение составляют вещества, в составе которых содержится такое количество кислорода, которого достаточно для поддержания горения даже без доступа воздуха (например, хлопок). Предельная концентрация кислорода, при которой прекращается горение различных веществ, приведена в табл. 2.3.

    Диоксид углерода в газообразном состоянии тяжелее воздуха примерно в 1,5 раза. При температуре 0°С и давлении около 4,0 МПа (40 атм) переходит в жидкое состояние. В таком виде его хранят в баллонах и огнетушителях. В процессе дросселирования способен образовывать хлопья “снега”. Не поддерживает горения большинства веществ, но и не тушит тлеющие материалы. Используют в стационарных установках, ручных (ОУ-2, ОУ-5, ОУ-8) и передвижных (УП-2М) огнетушителях. Применяют для объемного тушения пожаров в помещениях, пустотах конструкций, а также для защиты свободных объемов с целью предупреждения взрывов.

    При тушении пожаров большинства веществ огнетушащую концентрацию принимают 30 % по объему или 0,637 кг/м 3 для помещений с производством категорииВ и 0.768 кг/м 3 для помещений с производством категорийА иБ.

    Азот N 2 . Негорюч и не поддерживает горения большинства органических веществ. Плотность при нормальных условиях 1,25 кг/м 3 , в жидкой фазе (при температуре -196 °С) – 808 кг/м 3 . Хранят и транспортируют в баллонах в сжатом состоянии. Используют в стационарных установках. Применяют для тушения натрия, калия, бериллия, кальция и других металлов, которые горят в атмосфере диоксида углерода, а также пожаров в технологических аппаратах и электроустановках. Расчетная огнетушащая концентрация - 40 % по объему. Азот нельзя применять для тушения магния, алюминия, лития, циркония и некоторые других металлов, способных образовывать нитриды, обладающих свойствами и чувствительных к удару. Для их тушения используют инертный газаргон .

    Водяной пар. Эффективность тушения невысоки, поэтому применяют для защиты закрытых технологических аппаратов и помещений объемом до 500 м 3 (трюмы судов, трубчатые печи нефтехимических предприятий, насосные по перекачке нефтепродуктов, сушильные и окрасочные камеры), для тушения небольших пожаров на открытых площадках и создания завес вокруг защищаемых объектов. Огнетушащая концентрация - 35 % по объему.

    Тонкораспыленная вода (размеры капель менее 100 мк) получается с помощью специальной аппаратуры: стволов-распылителей, гидротрансформаторов, работающих при высоком напоре (200 - 300 м). Струи воды имеют небольшую величину ударной силы и дальность полета, однако орошают значительную поверхность, более благоприятны к испарению воды, обладают повышенным охлаждающим эффектом, хорошо разбавляют горючую среду. Они позволяют не увлажнять излишне материалы при их тушении, способствуют быстрому снижению температуры, осаждению дыма. Тонкораспыленную воду используют не только для тушения горящих твердых материалов, нефтепродуктов, но и для защитных действий.

    Галоидоуглеводороды и составы на их основе (огнетушащие средства химического торможения реакции горения) эффективно подавляют горение газообразных, жидких, твердых горючих веществ и материалов при любых видах пожаров. По эффективности они превышают инертные газы в 10 и более раз.

    Галоидоуглеводороды и составы на их основе являются летучими соединениями, представляют собой газы или легкоиспаряющиеся жидкости, которые плохо растворяются в воде, но хорошо смешиваются со многими органическими веществами. Они обладают хорошей смачивающей способностью, неэлектропроводны, имеют высокую плотность в жидком и газообразном состоянии, что обеспечивает возможность образования струи, проникновения в пламя, а также удержания паров около очага горения.

    Эти огнетушащие вещества можно применять для поверхностного, объемного и локального тушения пожаров. С большим эффектом их можно использовать при ликвидации горения волокнистых материалов, электроустановок и оборудования, находящихся под напряжением; для защиты от пожаров транспортных средств, машинных отделений судов, вычислительных центров, особо опасных цехов химических предприятий, окрасочных камер, сушилок, складов с горючими жидкостями, архивов, музейных залов, других объектов особой ценности, повышенной пожаро- и взрывоопасности. Галоидоуглеводороды и составы на их основе практически можно использовать при любых отрицательных температурах.

    Недостатками этих огнетушащих средств являются: коррозионная активность, токсичность; их нельзя применять для тушения материалов, содержащих в своем составе кислород, а также металлов, некоторых гидридов металлов и многих металлоорганических соединений. Хладоны не ингибируют горение и в тех случаях, когда в качестве окислителя участвуют не кислород, а другие вещества (например, оксиды азота). Кроме того, некоторые галоидоуглеводороды неприменимы в чистом виде. Например, бромистый этил при концентрации 6,5 - 11,3% может воспламениться от мощного источика теплоты. Однако вследствие высоких качеств он является основным компонентом в огнетушащих составах.

    Несмотря на большую эффективность, область применения галоидоуглеводородов и составов на их основе ограничена из-за высокой стоимости. В основном их используют в стационарных установках и огнетушителях предназначенных для защиты объектов, представляющих особую важность.

    Основные физико-химические свойства применяемых для пожаротушения галоидоуглеводородов и составов на их основе приведены в табл. 2.4.

    ТАБЛИЦА 2.4. ОСНОВНЫЕ ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ГАЛОИДОУГЛЕВОДОРОДОВ И СОСТАВОВ НА ИХ ОСНОВЕ, ИСПОЛЬЗУЕМЫХ ПРИ ТУШЕНИИ ПОЖАРОВ

    Условное обозначение

    Компоненты %

    Плотность

    Температура, 0 С

    Жидкости, кг/м 3

    Паров по воздуху

    Кипения

    Замерзания

    Бромистый этил - 100

    Бромистый этил - 70

    Диоксид углерода - 30

    Бромистый этил - 97

    Диоксид углерода - 3

    Бромистый метилен - 80

    Бромистый этил - 20

    Бромистый этил - 70

    Бромистый метилен - 30

    Бромистый этил - 84 Тетрафтордибромэтан - 16

    Бромистый этил - 73 Тетрафтордибромэтан - 27

    Хладон 114В2

    Тетрафторднбромэтан - 100

    Хладон 13В1

    Трифторбромметан - 100

    ОГНЕТУШАЩИЕ СРЕДСТВА, ДОПУСТИМЫЕ К ПРИМЕНЕНИЮ ПРИ ТУШЕНИИ ПОЖАРОВ РАЗЛИЧНЫХ ВЕЩЕСТВ И МАТЕРИАЛОВ

    Горючее вещество и материал

    Огнетушащие средства, допустимые к применению

    Азотная кислота

    Азотнокислый калий и натрий

    Алюминиевая пудра (порошок)

    Вода, известь, ингибиторы

    Вода, ингибиторы

    ОПС, инертные газы. ингибиторы, сухой песок, асбест

    Водяной пар

    Амилацетат

    Пены, ОПС, инертные газы, ингибиторы, песок

    Аммоний азотнокислый и марганцевокислый

    Вода, ингибиторы

    Пены, ОПС, ингибиторы, инертные газы, песок

    Вода в любом агрегатном состоянии, пены

    Ацетилен

    Водяной пар

    Химическая пена воздушно-механическая пена на основе ПО-1С, ингибиторы. инертные газы, водяной пар

    Пены, ингибиторы, инертные газы

    Раствор едкой щелочи

    Б ром ацетилен

    Инертные газы

    Пены, ОПС, распыленная вода, песок

    Волокна (вискозное и лавсан)

    Вода, водные растворы смачивателей, пены

    Водяной пар, инертные газы

    Водород перекись

    Вода в любом агрегатном состоянии, пены, ОПС

    Древесина

    Пригодны любые огнетушащие средства

    Калий металлический

    ОПС. ингибиторы, сухой песок

    Вода, ОПС, песок

    Карбид кальция

    ОПС, сухой песок, ингибиторы

    Вода, водные растворы смачивателей,

    Клей резиновый

    Распыленная вода, пены, ОПС, инертные газы, ингибиторы

    Коллодий

    Пены, ОПС, песок

    ОПС, сухой графит, кальцинированная сода

    Водяной пар, инертные газы

    Минеральные токсичные удобрения:

    аммиачная, кальциевая, натриевая селитры

    Вода, ОПС

    Натрий металлический

    ОПС, ингибиторы, сухой песок, кальцинированная сода

    Нафталин

    Распыленная вода, пены, ОПС, инертные газы

    Нефть и нефтепродукты:

    бензин, керосин, мазуты, масла, дизельное топливо и другие, олифа, растительные масла

    Вода в любых агрегатных состояниях, ОПС, пены, песок, инертные газы

    Пластмассы

    Обильное количество воды, ОПС

    Резина и резинотехнические изделия

    Вода, водные растворы смачивателей, ОПС, пены

    Распыленная вода, водные растворы смачивателей, пены

    Сено, солома

    Вода в любом агрегатном состоянии, водные растворы смачивателей, пены ­

    Вода, пены, ОПС, мокрый песок

    Сероводород

    Водяной пар, инертные газы, ингибиторы

    Сероуглерод

    Вода в любом агрегатном состоянии, пены, водяной пар, ОПС

    Скипидар

    Пены, ОПС, тонкораспыленная вода

    Спирт этиловый

    Химическая пена, воздушно-механическая пена средней кратности на основе ПО – 1С с предварительным разбавлением спирта до 70 %, воздушно-механическая пена средней кратности на основе других пенообразователей с предварительным разбавлением спирта до 50 %, ОПС, ингибиторы, обычная вода с разбавлением спирта до негорючей концентрации 28 %

    Вода в любом агрегатном состоянии

    Вода, ОПС, песок

    Пригодны любые огнетушащие средства

    Уголь каменный

    Вода в любом агрегатном состоянии, водные растворы смачивателей, пены

    Уголь в порошке

    Распыленная вода, водные растворы сма­чивателей, пены

    Уксусная кислота

    Распыленная вода, ОПС, пены, инертные газы

    Фосфор красный и желтый, формальдегид

    Вода, ОПС, мокрый песок, пены, инертный газ, ингибиторы

    Инертные газы

    Водяной пар, инертные газы

    Целлулоид

    Обильное количество воды, ОПС

    Целлофан

    Цинковая пыль

    ОПС, песок, ингибиторы, негорючие газы

    Вода, водные растворы смачивателей, пе­ны

    Электрон

    ОПС. сухой песок

    Инертные газы, ингибиторы

    Эфир этиловый

    Пены, ОПС, ингибиторы

    Эфир диэтнловый (серный)

    Инертные газы

    Ядохимикаты

    Гексохлоран 16 %-ный

    Тонкораспыленная вода

    ДНОК 40%-ный

    Обильное количество воды, не допускается высыхание препарата

    Дихлорэтан (технический)

    Тонкораспыленная вода, пены

    Карбофос 30%-ный

    Тонкораспыленная вода, водные растворы смачивателей, пены

    Метафос30%-ный

    Вода, пены

    Метилмеркаптофос30%-ный

    Распыленная вода, пены

    Севин 85%-ный

    Фозалон 35%-ный

    ОПС, пены, инертные газы

    Хлорпикрин

    Пены, водные растворы смачивателей

    Хлорофос технический 80%-ный

    Вода, пены,

    ТМТД 80%-ный

    Распыленная вода, пены

    Цинеб 80%-ный

    Пены, ОПС

    Бутифос 70 %-ный

    Тонкораспыленная вода

    2,4 - Д бутиловый эфир 34 – 72% - ный

    Тонкораспыленная вода, пены, инертные газы

    Дихлормочевина 50% -ная

    Линурон 50%- ный

    Суркопур 36%-ный

    ОПС, тонкораспыленная вода, пены

    Симазин 50% -ный

    Тонкораспыленная вода, пены

    Цианамид кальция

    ОПС, песок, инертные газы

    Бромэтиловая эмульсия, другие водные растворы галоидоуглеводородов и огнетушащие порошковые составы. Бромэтиловая эмульсия состоит из 90 % воды и 10 % бромистого этила. Она является эффективным средством при тушении бензола, толуола, метилового спирта, пожаров на самолетах и многих других. Эффективность бромэтиловой эмульсии по сравнению с обычной водой выше в 7 - 10 раз.

    Огнетушащие порошковые составы (ОПС) подразделяются на две основные группы:общего назначения, способные создавать огнетушащее облако (ПСБ, П-1А),-для тушения большинства пожаров испециальные , создающие на поверхности горящих материалов слой, предотвращающий доступ кислорода воздуха (порошки типа ПС и комбинированные типа СИ), - для тушения металлов и металлоорганических соединений. По принципу химического торможения реакции горения используют ОПС первой группы (см. табл.2.2).

    Прежде чем перейти к классификации и конструкциям огнетушителей, необходимо рассмотреть свойства наиболее распространенных огнетушащих веществ, используемых для зарядки в огнетушители.

    В качестве зарядов в огнетушителях используются следующие огнетушащие вещества:
    . Вода и водные растворы химических веществ;
    . Пена;
    . Порошковые составы;
    . Аэрозольные составы;
    . Газовые составы;

    Водные средства тушения:

    Вода — наиболее распространенное средство тушения пожаров, что обусловлено ее доступностью, низкой стоимостью, значительной теплоемкостью и высокой скрытой теплотой парообразования. Однако вода обладает достаточно высокой температурой замерзания, низкой теплопроводностью, высоким коэффициентом поверхностного натяжения (что препятствует ее быстрому растеканию по поверхности горящих твердых материалов, проникновению вглубь и их смачиванию). В связи с этим вода чаще применяется в виде растворов с различными добавками, которые придают ей особые свойства: снижают температуру замерзания, либо снижают коэффициент поверхностного натяжения, повышая ее смачивающую способность, либо повышает ее вязкость.

    Тушение горючих жидкостей компактной струей воды приводит к ее неэффективному использованию. Объясняется это тем, что вода обладает невысоким коэффициентом теплопроводности, поэтому, проходя через факел, она почти не успевает нагреться и поглотить тепло; в виде крупных капель она летит дальше или падает вниз. Это может привести к увеличению площади пожара в результате разбрызгивания горящей жидкости или растекания ее по поверхности воды.

    Наиболее огнетушащей способностью обладает струя воды тонкого распыления - с диаметром капель менее 150 мкм, которые интенсивно испаряясь, забирают значительное количество тепла от очага пожара и снижают содержания кислорода воздуха (превращаясь в пар, вода увеличивается в объеме примерно в 1700 раз). Тонкораспыленная вода не разбрызгивает горящую жидкость. И, кроме того, она сочетает в себе преимущества как жидкого, так и газового средства тушения. Получение тонкого распыления достигается применением специальных форсунок, нагревом воды выше температуры ее кипения и последующего выброса перегретой воды на очаг пожара или созданием газонасыщенного раствора СО2 в воде с помощью специальных распылителей. Однако тонкодисперсная струю воды в результате уменьшения диаметра капель и уноса их восходящими газовыми потоками обладает недостаточной проникающей способностью, что затрудняет тушение (так как приходится близко подходить к очагу пожара). Так при тушении твердых материалов, уложенных в штабель, струя не проникает внутрь его и не подавляет горение. Решением этой проблемы стало применение импульсного выброса воды с высокой скоростью подачи ее на очаг горения.

    Пена:

    Другим эффективным и не менее распространенным, чем вода, огнетушащим средством является пена. Она часто применяется для тушения пожаров, поскольку может одновременно оказывать как изолирующее, так и охлаждающее воздействие. Охлаждающее действие пены позволяет во многих случаях исключить повторное самовоспламенение горючего вещества после разрушения слоя пены.
    Пена представляет собой дисперсную систему типа газ - жидкость, в которой каждый пузырек газа (для огнетушителей это - воздух) заключен в оболочку из тонкой пленки и они связанны друг с другом этими пленками в единый каркас.
    Однако не все пены могут быть использованы для тушения пожаров. Бесполезно, например, тушить горящую жидкость мыльной пеной, так как она мгновенно разрушается в очаге пожара. Пены, применяемые для этих целей, должны обладать высокой структурно - механической прочностью, чтобы за время, необходимое для ее накапливания и тушения пожара, сохранится на поверхности горючей жидкости. Поэтому, помимо поверхностно - активных веществ, которые собственно и участвуют в создании пены, в рецептуру пенообразователя обязательно вводят стабилизатора.
    Кроме пены, для тушения пожаров применяется также воздушная эмульсия. Она в отличие от пены представляет собой систему, состоящую из отдельных пузырьков воздуха, и связанных единым каркасом и свободно распределенных в жидкости. Такая эмульсия образуется при ударе распыленного жидкостного заряда огнетушителя о поверхность горящего вещества.
    В отечественной практике водные растворы пенообразователей «в чистом виде» практически не используют в качестве заряда воздушно-пенных огнетушителей. Так как пенообразователи не могут долго храниться в виде рабочих растворов, к ним добавляют специальные соли, повышающие стойкость рабочих растворов и огнетушащую способность получаемой из них пены (особенно для тушения твердых веществ).
    Основным компонентом для получения огнетушащей пены являются водные растворы пенообразователей.
    По химическому составу пенообразователи подразделяются ан углеводородные (ПО-3НП, ПО-6НП, ПО-6ТС, ПО-6ЦТ, ТЭАС, «МОРПЕН» и др.) и фторсодержащие (ПО-6ТФ, ПО-6А3F, «Меркуловский», «Пленкообразующий» и др.)
    По назначению пенообразователи делятся на пенообразователи общего назначения (ПО-3НП, ПО-6ТС) и целевого назначения (ПО-6НП, «МОРПЕН», «Полярный», фторсодержащие), которые применяются в особых условиях или для тушения конкретной группы горючих веществ.
    Пена характеризуется рядом параметров, одним из которых является значение кратности - отношение объема пены к объему раствора, из которого она была получена, т.е. к объему ее жидкой фазы. Химическая пена обладает кратностью не выше 5. Воздушно - механическая пена может быть низкой кратности (от 4 до 20), средней (от 21 до 200) и высокой кратности (более 200). Для получения пены высокой кратности требуются специальные пеногенераторы, чаще с вентилятором, обеспечивающим принудительную подачу воздуха с необходимым расходом. Поэтому генераторы пены высокой кратности в огнетушителях не применяют.

    Порошковые составы:

    Другим огнетушащим веществом, которое находит все более широкое применение благодаря своей универсальности, являются порошковые составы, представляющие собой мелкодисперсные минеральные соли, которые обработаны специальными добавками для придания им текучести и снижения способности к смачиванию и поглощению воды. Наибольший эффект тушения порошком достигается, когда его частицы имеют размер порядка 5-15 мкм, однако такой порошок трудно подавать на очаг горения. Поэтому обычно порошок делают полидисперсным, т.е. состоящим из крупных (размером от 50 до 100 мкм) и мелких частиц. При подаче порошка из ствола или огнетушителя поток крупных частиц захватывает и доставляет мелкие частицы к очагу горения. Для получения порошковых составов используют аммонийные соли фосфорной кислоты, карбонаты, бикарбонаты, хлориды щелочных металлов и другие соединения.
    В зависимости от назначения порошковые составы делятся на порошки общего назначения, которые могут тушить пожары твердых углеродосодержащих и жидких горючих веществ, горючих газов и электрооборудования под напряжением до 1000 В, и порошки специального назначения, которые применяют для тушения металлов, металлоорганических соединений, гидридов металлов (пожары класса D) или других веществ, обладающих уникальными свойствами. Тушение пожаров порошками общего назначения осуществляется за счет создания огнетушащей концентрации в объеме над горящей поверхностью, порошками специального назначения - путем засыпки и изоляции поверхности горючего от кислорода воздуха.

    Огнетушащие порошки в зависимости от того, какие классы пожара ими могут быть потушены, подразделяются следующим образом:
    . Порошки типа АВСЕ, основной активный компонент которых фосфорно - аммонийные соли (Пирант-А, Вексон-АВС, ИСТО-1, «Феникс» и др). Они предназначены для тушения твердых, жидких, газообразных горючих веществ и электрооборудования, находящегося под напряжением.
    . Порошки типа ВСЕ основным компонентом которых может быть бикарбонат натрия или калия, сульфат калия, хлорид калия, сплав мочевины с солями угольной кислоты и др. (ПСБ-3М, Вексон-ВСЕ, ПХК и др). Эти порошки предназначены для тушения жидких, газообразных горючих веществ и электрооборудования, находящегося под напряжением (очаги пожара класса А этими порошками тушить бесполезно).
    . Порошки типа D (порошки специального назначения), основной компонент которых хлорид калия, графит и т.д. (ПХК, Вексон-D и др); применяются для тушения металлов, металлосодержащих соединений.
    Порошки экологически инертны и могут применяться для тушения практически любого класса пожаров горючих веществ в широком диапазоне температур (от -50 до +50).
    Как и другие огнетушащие вещества, порошки имеют ряд существенных недостатков. Так они не обладают охлаждающим эффектом, поэтому после тушения возможны случаи воспламенения уже потушенного вещества. Они загрязняют объект тушения. В результате образования порошкового облака снижается видимость (особенно в помещении небольшого объема). Кроме того, облако порошка оказывает раздражающие действия на органы дыхания и зрения. Так как порошки являются мелкодисперсными системами (основная масса частиц порошка имеет размер менее 100 мкм), частицы порошка склонны к агломерации (образование комков) и слеживанию, а вещества, которые входят в их рецептуру, - к поглощению воды и ее паров (в том числе из воздуха).

    Аэрозольные составы:

    В последнее время все более широкое применение находят аэрозольные огнетушащие составы. В качестве источника для их получения используются специальные аэрозолеобразующие твердотопливные или пиротехнические композиции, способные к горению без доступа воздуха. Аэрозольные огнетушащие составы образуются непосредственно в момент тушения при горении таких композиций. При сгорании аэрозолеобразующего состава выделяется огнетушащий аэрозоль, на 35-60 % состоящий из твердых частиц солей и оксидов щелочных металлов размером 1-5 мкм, негорючих газов и паров (N2, CO2, H2O и др.). Высокая огнетушащая эффективность (но только при объемном способе тушения) аэрозольных составов обусловлена достаточно длительным временем сохранения аэрозольного облака над очагом горения и поддержанием первоначальной огнетушащей концентрации, а так же высокой проникающей способностью. По этому параметру аэрозольные составы приближаются к газовым средствам тушения пожара. В момент применения аэрозольных средств тушения происходит также выжигание кислорода воздуха в атмосфере замкнутого объема, разбавление ее инертными продуктами сгорания заряда, ингибирование цепной реакции окисления в пламени высокодисперсными активными твердыми частицами. Аэрозольные составы не слеживаются; твердые мелкие частицы с развитой поверхностью обладают высокой активностью, так как образуются непосредственно в момент применения; аэрозольные генераторы не требуют трудоемкого обслуживания и т.д. Однако при всех своих положительных качествах аэрозольные составы обладают многими из недостатков, присущих огнетушащим порошкам. Кроме того, в устройствах во время их применения развивается высокая температура, а в некоторых конструкциях имеет место наличие открытого пламени, поэтому они могут сами явиться источником воспламенения (например, при ложном срабатывании). Конструкторам приходится применять специальные устройства для того, чтобы убрать открытое пламя и снизить температуру образующегося аэрозоля.

    Газовые составы:

    Наиболее «чистыми» огнетушащими веществами являются газовые составы. В качестве зарядов в газовых огнетушителях используют диоксид углерода и хладона.

    Диоксид углерода (углекислота) при температуре 20 0С и давлении 760 мм рт.ст. представляет собой бесцветный газ с кисловатым вкусом и слабым запахом, в 1,5 раза тяжелее воздуха. Являясь инертным газом, диоксид углерода не поддерживает горения; при введении его в область пламенного горения в количестве порядка 30 % об. и понижении содержания кислорода до 12-15% об. пламя гаснет, а при снижении концентрации кислорода в воздухе до 8% об. прекращаются и процессы тления. При переходе жидкого диоксида углерода (кот орый именно в таком виде находится в огнетушителе) в газ его объем увеличивается в 400-500 раз, причем этот процесс идет с большим поглощением тепла. Диоксид углерода применяется или в газообразном состоянии, или в виде снега. Он не загрязняет и почти не действует на сам объект тушения; обладает хорошими диэлектрическими свойствами, достаточно высокой проникающей способностью; не изменяет своих свойств в процессе хранения.
    Наибольший эффект достигается при тушении диоксидов углерода пожаров в замкнутых объемах.

    Из недостатков, которыми обладает это огнетушащее вещество, необходимо отметить следующее: охлаждение металлических деталей огнетушителя до температуры порядка минус 60 0С; накопление на пластмассовом раструбе значительных зарядов статистического электричества (до нескольких тысяч вольт); снижение при его применении содержания кислорода в атмосфере помещения и т.п.

    В заключении необходимо отметить, что для зарядки в огнетушители могут использоваться только огнетушащие вещества, имеющие санитарно-эпидемиологическое заключение и сертификат пожарной безопасности России. Для огнетушителей, поставляемых из-за рубежа в заряженном виде, наличие сертификата пожарной безопасности на огнетушащее вещество не требуется, необходимо наличие только санитарно-эпидемиологического заключения.