Все о тюнинге авто

Огнетушащие порошки разработка. Порошки огнетушащие. Пожарные автомобили порошкового тушения

Порошковые составы представляют собой мелкодисперсные минеральные соли, обрабо­танные специальными добавками для придания им текучести и сни­жения влагопоглощения.

Такие составы подразделяют на порошки общего и специального назначения.

Порошки общего назначения могут тушить жидкие горючие, твердые углеродсодержащие материалы, горючие газы, а также электрооборудование, находящееся под напряжением до 1000 В.

Огнетушащие порошки общего назначения используют для ту­шения пожаров классов А, В и С и их сочетаний, а также пожаров электрооборудования, находящегося под напряжением.

Порошки специального назначения применяют для тушения горящих металлов, металлоорганических соединений и гидридов металлов (при пожарах класса D). Тушение осуществляется путем изоляции поверхности горящего материала от доступа кислорода, содержащегося в воздухе.

Огнетушащий порошок специального назначения - это един­ственная огнетушащая среда, которая позволяет брать под конт­роль и тушить пожары горючих металлов, не вызывая при этом бурной химической реакции.

Огнетушащие порошки обеспечивают тушение пожара в основном тремя способами: за счет объемного тушения, прерыва­ния цепной реакции горения и экранирования теплоты излучения. Природа процессов, происходящих при воздействии порошков, представлена в табл.3.1.

Следует помнить, что ни один из огнетушащих порошков не об­ладает охлаждающим эффектом. Однако некоторое охлаждение порошки все же обеспечивают, потому что имеют более низкую тем­пературу, чем горящий материал, и теплота передается от более го­рячего вещества к более холодному порошку.

Совместимость огнетушащих порошков с другими огнетушащими веществами . Любой огнетушащий порошок можно использо­вать для тушения пожара совместно с другими огнетушащими по­рошками. Однако не следует смешивать разные порошки в одной емкости, т.к. одни из них имеют кислотную основу, другие - ще­лочную, и их перемешивание может вызвать повышение давления в емкости или образование крупных комков.

Многие виды огнетушащей пены разрушаются под воздействи­ем огнетушащего порошка, поэтому можно использовать только те огне­тушащие порошки, которые совместимы с пеной.

Безопасность огнетушащих порошков . Огнетушащие порошки считаются нетоксичными, но при вдыхании они могут вызвать раз­дражение дыхательных путей. Если членам экипажа нужно войти в помещение, куда был подан порошок, они должны обязательно воспользоваться дыхательными аппаратами и сигнальными тросами.

Применение огнетушащих порошков очень эффективно для ту­шения пожаров газа. Но воспламенившиеся газы не следует тушить до тех пор, пока не будет перекрыт источник газа.

Аэрозольные составы.

Аэрозольные составы, образующиеся при горении зарядов, созданных на базе компонентов твердых топлив, представляют собой смесь инертного газа и твердых частиц со­лей и окислов щелочных и щелочноземельных металлов микронно­го размера. Высокая огнетушащая эффективность аэрозольных со­ставов обусловлена протеканием при их применении следующих процессов:

    выжигание кислорода воздуха в атмосфере замкнутого объема;

    разбавление газовой фазы инертными продуктами сгорания зарядов;

Диоксид углерода СО 2 (углекислый газ).

Это вещество часто при­меняют в качестве огнетушащего средства. СО 2 (углекислый газ) в 1,5 раза тяжелее воздуха. Являясь инертным га­зом, СО 2 (углекислый газ) не поддерживает горения. При введении его в область пламенного горения в количестве до 30% (по объему) он понижает объемное содержание кислорода - до полного прекраще­ния процесса горения. При переходе жидкой углекислоты в газ ее объем увеличивается в 400...500 раз, этот процесс идет с большим поглощением тепла из окружающей среды. Диоксид углерода пода­ется на очаг горения в газообразном виде или в снегообразном со­стоянии. Он не загрязняет объект тушения, обладает хорошими диэлектрическими свойствами, не изменяет своих свойств в процессе хранения.

Наибольший эффект достигается при тушении углекислым газом пожаров в замкнутых объемах. При этом, однако, следует учитывать возможность токсического воздействия углекислого газа на людей.

Применение углекислого газа особенно эффективно при ту­ шении следующих пожаров:

    вызванных горением воспламеняющихся масел и жиров;

    связанных с загоранием электрического и электронного оборудования, такого как электродвигатели, генераторы и навигационное оборудование;

    в машинных помещениях, машинных отделениях, малярных и инструментальных кладовых;

    в грузовых помещениях, которые могут быть заполнены углекислым газом;

    на камбузах и в других помещениях, связанных с приготовлением пищи;

    в отсеках, где находятся ценные грузы (например, произведения искусства, точные механизмы и т. д.), которые могут быть испорчены водой или огнетушащими веществами на водяной основе;

При применении для тушения пожаров углекислого газа не обходимо учитывать следующее:

Перенос­ной углекислотный огнетушитель имеет радиус действия около 1,5 м.

Углекислый газ не может охладить горящее вещество до температуры ниже его воспламенения.

Следовательно, вероятна опасность возникновения повторного возгорания. При тушении пожаров электрооборудования, находящегося под напряжением, рядом следует иметь еще какое-либо неэлектропроводное огнетушащее вещество.

При использовании углекислого газа существует опасность удушья для людей. Несмотря на то,

что углекислый газ не ядовит, в концентрациях, необходимых для тушения пожара, он способен

вызвать у человека удушье, сопровождаемое головокружением, а иногда и потерей сознания. Если такого пострадавшего не вынести немедленно на свежий воздух, может наступить смерть.

В настоящее время для тушения пожаров широкого диапазона веществ наиболее широко из галогенсодержащих углеводородов используются: галон 1301 (бромтрифторметан (CBrF 3) - хладон 13В1), галон 1211, галон 2402 (тетрафтордибромэтан (C 2 F 4 Br 2) - хладон 114В2).

Принцип действия галогенсодержащих углеводородов основан на снижении содержания кислорода. Галоны, обладают высокой огнетушащей способностью почти ко всем видам горючих веществ.

Огнетушащие качества галонов позволяют применять их для тушения различных пожаров :

Пожаров электрооборудования;

Пожаров в машинных отделениях, машинных и других помещениях, в которых возможно

горение воспламеняющихся масел и консистентных смазок;

Пожаров в районах, где находятся ценные грузы, которые могут быть повреждены осадками,

остающимися после применения других огнетушащих веществ.

Существуют некоторые ограничения употребления галопов;

Они непригодны для тушения веществ, содержащих кислород, а также горючих металлов и гидридов.

В помещение, где для тушения был использован галон, людям нельзя входить до тех пор, пока

оно не будет тщательно провентилировано. Если кому-либо нужно остаться в помещении,

куда был подан галон 1301, или войти в него, следует воспользоваться дыхательным аппаратом и сигнальным тросом.

- При употреблении огнетушителя с талоном 1301 все люди, не занятые непосредственно работой с огнетушителем, должны тотчас же покинуть район пожара.

ЛЕКЦИЯ № 7

СИСТЕМЫ ПОЖАРОТУШЕНИЯ

Стационарные системы пожаротушения

Общие положения. Все судовые стационарные системы пожа­ротушения можно классифицировать по их конструктивным осо­бенностям.

По огнетушащему составу противопожарные системы и сред­ства можно разделить на водяные, пенные, газовые, порошковые и хладоновые

По принципу тушения различают системы и средства поверхно­стного и объемного тушения.

    общесудовые противопожарные системы;

    системы защиты помещений энергетической установки.

Установки водяного пожаротушения

дяная противопожарная система (ВПС) - основная систе­ма для защиты судна от пожара. Она устанавливается на судне неза­висимо от наличия других систем. ВПС обеспечивает подачу воды во все районы судна. Она включает: пожарные насосы, трубопрово­ды (магистраль и ответвления), клапаны управления, рукава и ство­лы.

Рис.1 . Водяная противопожарная система: 1 - главный пожарный насос; 2 - пожарный кран; 3 - комплект шлангов; 4 - спринклер; 5 - аварийный пожар­ ный насос

По трубопроводам вода движется от насосов к пожарным кра­нам, установленным на пожарных постах. Система трубопроводов состоит из магистрали и ответвлений (из труб меньшего диаметра), отходящих от нее к пожарным кранам. Максимальное давление в любом кране не должно превышать давления, при котором возмож­но эффективное управление пожарным рукавом.

Все участки системы водотушения на открытых палубах дол­жны быть защищены от замерзания. Для этого они могут быть снаб­жены спускными клапанами, позволяющими спускать воду в холодное время года.

Диаметр пожарной магистрали и ее отростков (ответвлений) должен быть достаточным для эффективного распределения воды при максимально требуемой подаче двух одновременно работающих пожарных насосов

Пожарные посты. Назначение ВПС заключается в подводе воды к пожарным постам, расположенным по всему судну. Пожар­ный пост включает пожарный кран с клапаном, пожарный рукав и стволы. Рукава вместе со всеми необходимыми принадлежностями и инструментами должны находиться на видных местах, вблизи кранов или соединений, в постоянной готовности к использованию.

Пожарные краны, устанавливаемые на пожарных постах, вклю­чают три основных элемента: запорный клапан, соединительную гай­ку для рукава с соответствующей резьбой и секторную укладку для рукава.

Все стволы должны быть одобренного Регистром комбинированного типа (т.е. давать как распыленную, так и компактную струю) и снабжены запорными вентилями.

Общее количество пожарных рукавов должно быть не менее пяти (в это число не входят любые

рукава, требуемые в машинных и котельных помещениях).

Установки водяного пожаротушения могут быть спринклерны ми и дренчерными.

Спринклерные установки предназначены для локального ту­шения пожаров или снижения температуры в защищаемых поме­щениях.

В общем случае в состав спринклерной установки входят:

Водоисточник;

Основной водопитатель;

Вспомогательный (автоматический) водопитатель или импульсное устройство;

Контрольно-сигнальные клапаны

Сеть трубопроводов для транспортирования воды к оросителям;

Оросители для подачи воды к месту возникновения пожара;

Пожарные извещатели, реагирующие на физико-химические факторы пожара.

Спринклерная установка включается автоматически - при повышении температуры внутри помещения до заданного предела. Функцию пожарного извещателя выполняет тепловой замок спринклерного оросителя (спринклера). Наличие замка обеспечивает герметизацию выходного отверстия оросителя. В первую очередь срабатывают спинклеры, расположенные над очагом пожара. При -этом падает давление в распределительном и питательном трубопроводах, срабатывает соответствующий контрольно-сигналь­ный клапан, и вода из вспомогательного водопитателя по подающему трубопроводу подается на тушение через открывшиеся спринклеры.

Спринклерные установки пожаротушения наиболее широко при­меняют на паромах и пассажирских судах для защиты жилых помеще­ний, расположенных рядом с ними коридоров и общественных поме­щений.

Рис. 2 Спринклерная система пожаротушения: 1 - спринклеры; 2 - магист­раль; 3 -распределительная станция; 4 - насос; 5 - пневмоцистерна

Во избежание коррозионного повреждения элементов система заполнена пресной водой, которая поступает в спринклеры в первые минуты после включения системы, а затем включается насос 4, ко­торый подает по магистрали 2 забортную воду.

Преимущество автоматической спринклерной установки - практически мгновенное включение в действие при повышении температуры в защищаемых помещениях. После ликвидации пожара для восстановления работоспособности системы требуется заме­на сработавших спринклеров (необходимость использования в су­довых спринклерных установках забортной воды, содержащей мно­го примесей, снижает их надежность).


Владельцы патента RU 2465938:

Изобретение относится к огнетушащим порошковым составам, которые могут быть использованы для тушения всех видов пожаров в химической, нефтехимической, угольной, деревообрабатывающей и других отраслях промышленности. Огнетушащий порошок на основе алюмосиликатных микросфер представляет собой узкие фракции полых сферических гранул со средним диаметром в интервале 2-230 мкм, при этом оболочка полых алюмосиликатных микросфер представляет собой композитный стеклокристаллический материал состава, мас.%: алюмосиликатная стеклофаза 57-92, фаза муллита 1-42, фаза кварца 1-9. Огнетушащий порошок на основе алюмосиликатных микросфер выделяют из летучих зол и концентратов ценосфер летучих зол от сжигания угля с использованием гранулометрической сепарации или аэродинамической классификации. Технический результат - высокая текучесть, низкая склонность к влагопоглощению, отсутствие склонности, к слеживанию, удовлетворительная огнетушащая способность. 2 н.п. ф-лы, 6 ил., 2 табл., 4 пр.

Изобретение относится к огнетушащим порошковым составам, которые могут быть использованы для тушения всех видов пожаров в химической, нефтехимической, угольной, деревообрабатывающей и других отраслях промышленности.

Огнетушащие порошки являются универсальным огнетушащим веществом благодаря наличию ряда достоинств [Баратов А.Н., Вогман Л.П. Огнетушащие порошковые составы, Москва, Стройиздат, 1982, 72 с.]: высокая огнетушащая способность, обусловленная механизмом тушения, который включает в себя ингибирование цепных реакций горения, разбавление горючей среды, огнепреграждение и ряд других эффектов, универсальность применения - тушение всех классов пожаров, возможность эксплуатации в широком диапазоне температур - от +50 до -50°С и др.

В настоящее время огнетушащие порошки представляют собой механические смеси мелкоизмельченных минеральных солей с различными добавками, препятствующими слеживанию и влагопоглощению. В качестве основы для огнетушащих порошков используют фосфорно-аммонийные соли (моно-, диаммонийфосфаты, аммофос), карбонат и бикарбонат натрия и калия, хлориды натрия и калия и др.; в качестве добавок для улучшения эксплуатационных характеристик - кремнийорганические соединения, аэросил, белая сажа, стеараты металлов, нефелин, тальк и др. [Пат. РФ №2232612, A62D 1/00, 20.07.2004; Пат. РФ №2236880, A62D 1/00, 27.09.2004; Пат. РФ №2370295, A62D 1/00, С01В 33/12, 10.01.2009}. Наряду с этим, для получения огнетушащих порошков используют различные природные минералы - галит, мусковит, шунгит [Пат. РФ №2417112, A62D 1/00, 27.04.2011; Пат. РФ №2372957, A62D 1/00, 20.11.2009; Пат. РФ №2256477, A62D 1/00, 20.07.2005}, а также отходы различных производств [Пат. РФ №2159138, A62D 1/00, 20.11.2000; Пат. РФ №2216371, A62D 1/00, 20.11.2003; Пат. РФ №2044543, A62D 1/00, 27.09.1995}.

Наряду с достоинствами, огнетушащие порошки обладают и рядом недостатков, наиболее характерными из которых является склонность к слеживанию и влагопоглощению, недостаточная текучесть, приводящие к сокращению срока эксплуатации и ограниченности использования средств пожаротушения, а также многокомпонентность составов, сложность рецептуры и большое число стадий (измельчение, сушка, смешение и др.), необходимых для их получения.

Известен огнетушащий порошок торговой марки «Вексон» [ТУ 2149-028-10968286}, представляющий собой дисперсную смесь минеральных солей с различными добавками. Данный состав характеризуется отсутствием склонности к слеживанию - 0%, однако способ его получения многостадиен и длителен во времени [Пат. РФ №2143297, С04В 33/28, 27.12.1999}.

Повышение текучести огнетушащих порошковых составов достигается использованием материалов с частицами сферической формы, текучесть которых сопоставима с текучестью жидкости. Известен способ получения керамических сфероидов размером 0,2-2,5 мм, включающий диспергирование шликера, содержащего порошок керамического материала и термопластичную органическую связку в формующей жидкости [Пат. РФ №2079468, С04В 33/28, 20.05.1997}. Полученные по заявляемому способу сфероиды рекомендуются для использования в пожаротушении, однако их огнетушащая способность и эксплуатационные свойства не определены.

Известен способ получения огнетушащего порошка, представляющего собой смесь полых сферических частиц фосфата аммония, полученных методом распылительной сушки, характеризующихся низкой плотностью и хорошей огнетушащей способностью [Пат. CN №1837733, A62D 1/06, 27.09.2006}. Однако для достижения необходимых эксплуатационных показателей по влагопоглощению и слеживанию данный порошок необходимо обрабатывать модифицирующими компонентами.

Наиболее близким по технической сущности к заявляемому изобретению является порошок с частицами сферической формы и содержанием фракции 40-70 мкм не менее 95 мас.%, представляющий собой многофазный композитный материал сложного состава ·a ·b, где M(I) -катионы Li + , Na + , K + , Rb + , Cs + , NH +4 или их смесь, М(II) - Mg 2+ , Ca 2+ , Zn 2+ или их смесь, M(IV) - Si +4 , Ti 4+ , Zr 4+ , или их смесь, A n1 - F - , Cl - , Br - , J - ; A n2 -NO -3 , , , - при следующем мольном соотношении компонентов и фаз: х=20-1, у=1-10, z=0-10, а=100-1, b=1-30 [Пат. РФ №2095103, A62D 1/00, 10.11.1997}. Огнетушащая способность порошка, охарактеризованная его расходом в г/см 2 при тушении пожара класса В, составила 0.3-0.6.

К недостаткам данного порошка следует отнести многочисленность компонентов и сложность рецептуры приготовления (растворение исходных солей, фильтрация суспензий, испарение воды, сушка), низкий выход целевого компонента, что приводит к значительному удорожанию заявляемого порошка. Отсутствие данных по исследованию эксплуатационных характеристик, таких как склонность к слеживанию и влагопоглощению, снижает практическую возможность использования данного изобретения.

Изобретение решает задачу получения огнетушащих порошков пониженной стоимости, обладающих высокими эксплуатационными характеристиками - текучестью, пониженной склонностью к влагопоглощению и слеживанию, удовлетворительной огнетушащей способностью.

Для решения поставленной задачи предложен огнетушащий порошок на основе алюмосиликатных микросфер, при этом оболочка микросфер представляет собой композитный стеклокристаллический материал.

Огнетушащий порошок представлен узкими фракциями полых сферических частиц со средним диаметром в интервале 2-230 мкм.

Задача достигается тем, что для получения огнетушащих порошков используют узкие фракции полых алюмосиликатных микросфер с содержанием Al 2 O 3 20-38 мас.% и SiO 2 53-67 мас.%, которые выделяют из летучих зол и концентратов ценосфер летучих зол от сжигания угля с использованием гранулометрической сепарации или аэродинамической классификации.

Указанные признаки не выявлены в других технических решениях при изучении уровня данной области техники и, следовательно, решение является новым и имеет изобретательский уровень.

Сущность изобретения заключается в следующем.

Стремлением повысить эффективность тушения пожаров всех классов, снизив при этом затраты на тушение требует активного поиска дешевых и универсальных огнетушащих порошков. Перспективным в этом направлении представляется применение в качестве базовых компонентов огнетушащих составов алюмосиликатных микросфер летучих зол.

Микросферы летучих зол являются доступным и дешевым материалом, получаемым в качестве побочного продукта при сжигании угля на тепловых электростанциях. Формирование микросфер происходит в результате термохимических превращений исходных минеральных форм угля и кристаллизации отдельных фаз в процессе охлаждения капель расплава. Их гранулометрический, химический и фазовый составы, а также размер кристаллитов образующихся минеральных фаз, морфология глобул зависят от большого числа параметров, в том числе состава исходного угля, типа используемых топок, режима охлаждения капель расплава и др. [Л.Я.Кизильштейн и др. Компоненты зол и шлаков ТЭС, Москва, Энергоатомиздат, 1995; Vassilev S.V., Fuel Proc. Technol. 47(1996)261].

По химическому составу микросферы представляют собой многокомпонентные системы SiO 2 -Al 2 O 3 -Fe 2 O 3 -CaO-MgO-Na 2 O-K 2 O-TiO 2 с содержанием стеклофазы от 80 до 90%, в которой распределены кристаллические фазы кварца, муллита, ферритовых шпинелей и кальцита.

Микросферы характеризуются сферической формой, широким фракционным составом, наличием внутренней полости, высокой прочностью и регулярной пористостью стеклокристаллической оболочки, термостабильностью и кислотостойкостью .

Особенности морфологии и минерально-фазового состава микросфер делают этот материал перспективным сырьем для получения современных функциональных материалов, в том числе в области пожарной безопасности.

Известен способ тушения пожара [Пат. РФ №2388507, А62С 3/00, 10.05.2010], в котором полые микросферы размером 20-80 мкм используются в качестве микроконтейнеров для доставки огнетушащего вещества в зону горения. Наряду с этим, полые алюмосиликатные микросферы используются в качестве рыхлителя для порошковых огнетушителей [Пат. РФ №2417808, A62D 1/00, 10.05.2011}, а также в качестве наполнителя огнестойкой композитной панели [Пат. РФ №2422598, Е04В 1/94, Е04С 2/26, С04В 26/04, С04В 18/06, 27.06.2011].

Создание дешевых огнетушащих порошков на основе алюмосиликатных микросфер летучих зол, которые являются отходами теплоэнергетики, обладают высокой текучестью за счет сферической формы, не подвержены слеживанию и не поглощают влагу, так как представляют собой стеклокристаллический материал, а также сами могут являться огнетушащим веществом - это наиболее эффективный и оптимальный вариант использования микросфер в области пожарной безопасности.

Наряду с этим, использование отходов теплоэнергетики для производства огнетушащих порошков решает экологические проблемы.

Сущность изобретения демонстрируется следующими примерами, таблицами и иллюстрациями.

На Фиг.1 приведены распределения частиц концентратов алюмосиликатных микросфер: 1 - серия М, 2 - серия Р.

На Фиг.2 приведены снимки оптического микроскопа узких фракций огнетушащих порошков со средним диаметром частиц: 1-230, 2-115, 3-113, 4-47 мкм.

На Фиг.3 изображена гранула, содержащая кристаллиты муллита, образца огнетушащего порошка со средним диаметром частиц 47 мкм.

На Фиг.4 изображена схема установки для разделения летучей золы в восходящем потоке воздуха: 1 - аэродинамическая труба, 2 - трубка для поступления воздуха, 3 - регулятор, 4 - насос, 5 - фильтр.

На Фиг.5 приведены снимки оптического (1) и растрового электронного микроскопа (2) узкой фракции огнетушащего порошка со средним диаметром частиц 9 мкм.

На Фиг.6 изображены гранулы, содержащие кристаллиты муллита, образца огнетушащего порошка со средним диаметром частиц 9 мкм

В качестве огнетушащих порошков используют концентраты алюмосиликатных микросфер (ценосфер) Московской ТЭЦ-22 (серия М), сжигающей каменные угли Кузнецкого бассейна, и Рефтинской ГРЭС (серия Р), сжигающей каменные угли Экибастузского бассейна.

С помощью оптического микроскопа Axioskop 40 (Carl Zeiss), снабженного окуляром W-PI 10х/23 и цифровой камерой PowerShot A 640 (Canon), и специально разработанной программы «Msphere», входными данными для которой являлись пары цифровых снимков, содержащие не менее 4500 частиц, определяют распределение частиц (Фиг.1) и устанавливают, что средний диаметр глобул для концентратов серий М и Р составляет 70 и 110 мкм соответственно.

Методами химического анализа по стандартной методике [ГОСТ 5382-91 «Цементы и материалы цементного производства. Методы химического анализа»} определяют химический состав концентратов ценосфер (Таблица 1; образцы 1-2), включающий содержание оксидов кремния, алюминия, железа, кальция, магния, калия, натрия, титана, марганца, серы и фосфора, а также потери при прокаливании (п.п.п.), в том числе устанавливают, что содержание основных макрокомпонентов в концентратах серий М и Р составляет: Al 2 O 3 -26 и 38 мас.%, SiO 2 -64 и 55 мас.% соответственно.

Эксплуатационные свойства огнетушащих порошков на основе концентратов алюмосиликатных микросфер определяют в соответствии с требованиями ГОСТ Р 53280.4-2009 ((Установки пожаротушения автоматические. Огнетушащие вещества. Часть 4. Порошки огнетушащие общего назначения. Общие технические требования и методы испытаний». Следует отметить, что все приемочные испытания огнетушащих порошков в России проводятся в соответствии с этими требованиями, учитывающими положения международного стандарта ISO 7202. У огнетушащих порошков определяют следующие характеристики: кажущаяся плотность неуплотненного и уплотненного порошка, фракционный состав, массовое содержание влаги, склонность к влагопоглощению, склонность к слеживанию. В качестве сравнения использовали известный огнетушащий порошок торговой марки «Вексон» АВС 25 [ТУ 2149-028-10968286].

Полученные численные значения характеристик огнетушащих порошков на основе концентратов алюмосиликатных микросфер серий М и Р приведены в таблице 2 (Образцы 1-2).

Анализ таблицы показывает, что концентраты алюмосиликатных микросфер характеризуются отсутствием склонности к слеживанию, превосходят известный порошок по склонности к влагопоглощению, соответствуют требованиям ГОСТ Р 53280.4-2009 по этим показателям и по массовому содержанию влаги, но не соответствуют ему по показателю кажущейся плотности.

Из концентрата ценосфер Рефтинской ГРЭС (серия Р) методом гранулометрической классификации выделяют фракцию ценосфер менее 50 мкм и определяют ее огнетушащие свойства с помощью лабораторной методики ФГУ ВНИИПО МЧС России на лабораторной установке с площадью очага горения 40 см 2 , используя в качестве горючего вещества октан (пожар класса В). Огнетушащую способность характеризуют расходом порошка в г/100 см 2 . В качестве порошка-сравнения использовали известный огнетушащий порошок торговой марки «Вексон» АВС 25 [ТУ 2149-028-10968286}. Полученные численные значения огнетушащей способности приведены в таблице 2. Анализ таблицы показывает, что заявляемый огнетушащий порошок по огнетушащим свойствам уступает порошку-сравнения и выбранному прототипу.

Из концентратов ценосфер Новосибирской ТЭЦ-5 (серия Н), Московской ТЭЦ-22 (серия М), сжигающих каменные угли Кузнецкого бассейна, и Рефтинской ГРЭС (серия Р), сжигающей каменные угли Экибастузского бассейна, выделяют по технологической схеме }