Все о тюнинге авто

Радиусы зон разрушения. Расчет последствий взрыва внутри технологического оборудования. Такими условиями являются

При аварии в резервуарном парке количество газа q(t) или пара берётся: 30% от объёма наибольшего резервуара с бензином, 20% - с нефтью. При аварии на трубопроводе - до 20% вытекшей нефти и до 50% вышедшего газа. При аварии на автотранспорте - 4т бензина. При аварии на железной дороге - 10т бензина, 7т нефти. Величина дрейфа газа воздушного облака принимается равной 300 м в сторону предприятия.

При взрыве пара и газа воздушной смеси выделяют зону детонационной волны с радиусом R1 и зону ударной волны. Определяется также: радиус зоны смертельного поражения людей (R см); радиус безопасного удаления (R бу), где R ф=5 кПа; радиус предельно допустимой взрывобезопасной концентрации пара, газа Кпдвк.

Давление во фронте ударной волны Рф2 в зоне ударной волны определяют по таблице/19/

Избыточное давление в зоне детонационной волны определяется:

Радиус зоны смертельного поражения людей определяется по формуле:

где Q - количество газа, газа в тоннах;

R1 - радиус зоны детонационной волны;

R CM - радиус смертельного поражения людей.

Расчёт взрыва резервуара вертикального стального ёмкостью 5000 м3 с нефтью

Определяем количество газа, выделившегося при взрыве:

Количество нефти в тоннах:

5000?875 = 4375000 кг. = 4375 т.

Тогда количество газа:

0,2 ? 4375 = 875 т.

По формуле определяем радиус зоны детонационной волны:

R1=18,5 ?(875)1/3 = 173,00 м.

По формуле определяем радиус зоны смертельного поражения:

RCM=30 ? (875)1/3 = 280,53м.

Расстояние от центра взрыва до операторной r2= 200 м., то r2/R1=200/173 = 1,16, тогда избыточное давление от центра взрыва до операторной Рф1 = 279 кПа

В соответствии с для оценки риска чрезвычайной ситуации при разработке подраздела проектной документации выбираются только те техногенные чрезвычайные ситуации, зоны действия поражающих факторов которых выходят за границы проектной застройки объектов и (при наличии) примыкающей к ней санитарно-защитной зоны.

Согласно определение (расчет) границ и характеристик зон воздействия поражающих факторов аварий, которые могут привести к техногенной чрезвычайной ситуации как на объектах, так и за их пределами, а также определение вероятности поражения в определенной точке селитебной территории в результате реализации сценария развития чрезвычайной ситуации должно производиться по методикам, утвержденным, согласованным или рекомендованным федеральными органами исполнительной власти. Рекомендованные методики для определения границ и характеристик зон воздействия поражающих факторов аварии приведены в приложении Т (таблица 3).

На основании для выявления пожароопасных ситуаций осуществляется деление технологического оборудования (технологических систем) при их наличии на объектах на участки. Указанное деление выполняется исходя из возможности раздельной герметизации этих участков при возникновении аварии. Рассматриваются пожароопасные ситуации как на основном, так и вспомогательном технологическом оборудовании. Кроме этого учитывается также возможность возникновения пожара в зданиях, сооружениях и строениях различного назначения, расположенных на территории объектов.

В перечне пожароопасных ситуаций применительно к каждому участку, технологической установке, зданиям объектов выделяются группы пожароопасных ситуаций, которым соответствуют одинаковые модели процессов возникновения и развития.

Определение массы, участвующей в аварии, проводится в соответствии с 3].

В приложениях к подразделу «ПМ ГОЧС» рекомендуется приводить копии документов, подтверждающих применение того или иного программного обеспечения, применяемого для расчетов границ и характеристик зон воздействия поражающих факторов аварий, в том числе:

  • свидетельство о государственной регистрации программы для электронно-вы­числительных машин с указанием номера и даты, а также органа, выдавшего свидетельство;
  • реквизиты программы, приведенные на основании договора на право пользования программным обеспечением.
Прогнозирование масштабов зон заражения АХОВ выполняется на основании с учетом требований .

Результаты расчетов вероятных зон действия поражающих факторов аварий, которые могут привести к чрезвычайной ситуации техногенного как на объектах, так и за их пределами рекомендуется приводить в табличной форме с указанием следующих параметров:

  • для пожара пролива:
  1. площадь пролива опасного вещества;
  2. удельная массовая скорость выгорания опасного вещества;
  3. уровни поражения тепловым излучением:
- безопасно для человека в брезентовой одежде (4,2 кВт/м 2);
- без негативных последствий для человека в течение длительного времени (1,4 кВт/м 2);
  • для огненного шара:
диаметр огненного шара;
  1. время существования «огненного шара»;
  2. зона ожога третьей степени (320 кДж/м 2);
  3. зона ожога второй степени (220 кДж/м 2);
  4. зона ожога первой степени (120 кДж/м 2);
  • для взрыва:
  1. радиус зоны действия поражающих факторов при полных разрушениях (избыточное давление – 100 кПа);
  2. радиус зоны действия поражающих факторов при сильных разрушениях (избыточное давление – 53 кПа);
  3. радиус зоны действия поражающих факторов при средних разрушениях (избыточное давление – 28 кПа);
  4. радиус зоны действия поражающих факторов при слабых разрушениях (избыточное давление – 12 кПа);
  5. нижний порог повреждений человека волной давления (избыточное давление – 5 кПа).
  • для заражения АХОВ:
  1. тип АХОВ;
  2. масса АХОВ;
  3. полная глубина зоны химического заражения;
  4. площадь зоны возможного химического заражения.
В соответствии с приложением № 5 при оценке последствий воздействия опасных факторов аварий на объектах и для оценки степени возможного поражения людей и разрушения зданий, сооружений по вычисленным параметрам поражающих факторов могут использоваться как детерминированные (учитывающие только величину поражающих факторов), так и вероятностные критерии (по пробит-функции, характеризующей вероятность возникновения последствий определенного масштаба в зависимости от уровня воздействия).

Детерминированные критерии устанавливают значения поражающего фактора, при которых наблюдается тот или иной уровень поражения (разрушения).

Детерминированные критерии присваивают определенной величине негативного воздействия поражающего фактора конкретную степень поражения людей, разрушения зданий, инженерно-технических сооружений.

Детерминированные критерии поражения тепловым излучением

При оценке воздействия теплового излучения основным критерием поражения является интенсивность теплового излучения. Значения предельно допустимой интенсивности теплового излучения приведены в таблице 1. Для определения числа пострадавших рекомендуется принимать значение интенсивности теплового излучения, превышающее 7,0 кВт/м 2 .

Таблица 1 – Значения предельно допустимой интенсивности теплового излучения

Степень поражения

Интенсивность
теплового излучения, кВт/м 2

Без негативных последствий в течение длительного времени 1,4
Безопасно для человека в брезентовой одежде 4,2
Непереносимая боль через 20–30 с
Ожог первой степени через 15–20 с
Ожог второй степени через 30–40 с
Воспламенение хлопка-волокна через 15 мин
7,0
Непереносимая боль через 3–5 с
Ожог первой степени через 6–8 с
Ожог второй степени через 12–16 с
10,5
Воспламенение древесины с шероховатой поверхностью (влажность 12 %) при длительности облучения 15 мин 12,9
Воспламенение древесины, окрашенной масляной краской по строганной поверхности; воспламенение фанеры 17,0

Воздействие открытого пламени и тепловой радиации от пожара на технологическое оборудование, наружные установки оценивается по значению поглощенной дозы тепловой радиации:
  • D пор – пороговое значение дозы поглощенной тепловой радиации, кВтс/м 2 , ниже которого оборудование получает только слабые повреждения (k повр = 0,1);
  • D гиб – значение дозы поглощенной тепловой радиации, кВтс/м 2 , выше которого оборудование считается полностью разрушенным (k повр = 1,0).
Значения D пор и D гиб для оборудования разных классов чувствительности к воздействию тепловой радиации приведены в таблице 2.

Таблица 2 – Значения D пор и D гиб для оборудования разных классов чувствительности
к воздействию тепловой радиации

Класс
чувствительности
оборудования

Тип оборудования

D пор , кВт·с/м 2

D гиб , кВт·с/м 2

I (высокочувствительное) Расположенное вне укрытий сложное технологическое оборудование 3300 10000
II (среднечувствительное) Оборудование в блок-контейнерах или индивидуальных укрытиях.
Незащищенные крановые узлы, средства электрохимической защиты, контрольные пункты телемеханики, опоры линий электропередачи и другое незащищенное технологическое оборудование с фланцевыми соединениями с чувствительными к нагреву материалами-уплотнителями
8300 25000
III (слабочувствительное) Наземные трубопроводы, крановые узлы в защитном укрытии 35000 45000
Подземное технологическое оборудование принимается нечувствительным к термическому воздействию и при любой аварии считается неповрежденным (k повр = 0).

Для поражения человека тепловым излучением используется значение величины пробит-функции.

При использовании пробит-функции в качестве зон стопроцентного поражения принимаются зоны поражения, где значение пробит-функции достигает величины, соответствующей вероятности, равной 90 %. В качестве зон, безопасных с точки зрения воздействия поражающих факторов, принимаются зоны поражения, где значения пробит-функ­ции достигают величины, соответствующей вероятности, равной 1 %.

Условная вероятность поражения человека, попавшего в зону непосредственного воздействия пламени пожара, пролива или факела, принимается равной 1.
Для пожара-вспышки следует принимать, что условная вероятность поражения человека, попавшего в зону воздействия высокотемпературными продуктами сгорания газопаровоздушного облака, равна 1. За пределами этой зоны условная вероятность поражения человека принимается равной 0.
При расчете вероятности поражения человека тепловым излучением рекомендуется учитывать возможность укрытия (например, в здании или за ним).
Детерминированные критерии поражения воздушной ударной волной.
Величина избыточного давления на фронте падающей воздушной ударной волны значением 5 кПа принимается безопасной для человека. Воздействие на человека воздушной ударной волны с избыточным давлением на фронте более 120 кПа рекомендуется принимать в качестве смертельного поражения. Для определения числа пострадавших рекомендуется принимать значение избыточного давления, превышающее 70 кПа.

Критерии разрушения типовых промышленных зданий от избыточного давления приведены в таблице 3.

Таблица 3 – Критерии разрушения типовых промышленных зданий от избыточного давления



Степени разрушения различных административных, производственных зданий и сооружений от воздействия избыточного давления воздушной ударной волны приведены в таблице 4.

Таблица 4 – Степени разрушения различных административных, производственных зданий и сооружений от воздействия избыточного давления воздушной ударной волны

Тип зданий, сооружений

Разрушение при избыточном давлении на фронте
ударной волны, кПа

Слабое Среднее

Сильное

Полное

Промышленные здания с тяжелым металлическим или железобетонным каркасом 20–30 30–40 40–50 >50
Промышленные здания с легким каркасом и бескаркасной конструкции 10–20 25–35 35–45 >45
Складские кирпичные здания 10–20 20–30 30–40 >40
Одноэтажные складские помещения с металлическим каркасом и стеновым заполнением из листового металла 5–7 7–10 10–15 >15
Бетонные и железобетонные здания и антисейсмические конструкции 25–35 80–120 150–200 >200
Здания железобетонные монолитные повышенной этажности 25–45 45–105 105–170 170–215
Котельные, регуляторные станции в кирпичных зданиях 10–15 15–25 25–35 35–45
Деревянные дома 6–8 8–12 12–20 >20
Подземные сети, трубопроводы 400–600 600–1000 1000–1500 1500
Трубопроводы наземные 20 50 130 -
Кабельные подземные линии до 800 - - 1500
Цистерны для перевозки нефтепродуктов 30 50 70 80
Резервуары и емкости стальные наземные 35 55 80 90
Подземные резервуары 40 75 150 200

Условная вероятность травмирования и гибели людей, находящихся в зданиях, в зависимости от степени разрушения зданий от воздействия воздушной ударной волны определяется по таблице 5.

Таблица 5 – Условная вероятность травмирования и гибели людей, находящихся в зданиях, в зависимости от степени разрушения зданий от воздействия воздушной ударной волны



Для расчета условной вероятности разрушения объектов и поражения людей ударными волнами используют пробит-функции.

При использовании пробит-функций в качестве зон 100 %-ного поражения принимаются зоны поражения, где значение пробит-функции достигает величины, соответствующей вероятности в 90 %. В качестве зон, безопасных с точки зрения воздействия поражающих факторов, принимаются зоны поражения, где значения пробит-функции достигают величин, соответствующих вероятности в 1 %.

Критерии токсического поражения

Границы зон токсического поражения опасным веществом рассчитываются по смертельной и пороговой токсодозам при ингаляционном воздействии на организм человека либо по пробит-функциям.
Сравнением с пороговыми и смертельными токсодозами определяются расстояния, соответствующие смертельному поражению и пороговому воздействию.
Для оценки вероятности смертельного поражения человека используется пробит-функция.

При расчете воздействия токсических веществ на человека рекомендуется учитывать возможность укрытия, например в здании, а также применения средств индивидуальной защиты (противогазов).

Перечень нормативных документов

  1. Методика определения расчетных величин пожарного риска на производственных объектах, утвержденная приказом МЧС России от 10.07.2009 № 404.
  2. Руководство по безопасности «Методические основы по проведению анализа опасностей и оценки риска аварий на опасных производственных объектах», утвержденное приказом Федеральной службы по экологическому, технологическому и атомному надзору от 11.04.2016 № 144.
  3. Руководство по безопасности «Методика моделирования распространения аварийных выбросов опасных веществ», утвержденное приказом Федеральной службы по экологическому, технологическому и атомному надзору от 20.04.2015 № 158.
  4. ГОСТ Р 22.2.02−2015 «Безопасность в чрезвычайных ситуациях. Менеджмент риска чрезвычайной ситуации. Оценка риска чрезвычайной ситуации при разработке проектной документации объектов капитального строительства».
  5. СП 165.1325800.2014 «СНиП 2.01.51-90.Инженерно-технические мероприятия по гражданской обороне».
  6. РД 52.04.253-90 «Методика прогнозирования масштабов заражения сильнодействующими и ядовитыми веществами при авариях (разрушениях) на химически опасных объектах и на транспорте».

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство железнодорожного транспорта

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Иркутский государственный университет путей сообщения

Красноярский институт железнодорожного транспорта

Контрольная работа

Дисциплина: Транспортная безопасность

Расчет размеров взрывоопасных зон избыточного давления взрыва ТВС при авариях с СУГ

Выполнил:

студент заочной формы

Титов Е.Н.

Красноярск 2015 г.

аварийный разгерметизация взрыв пожарный

Определить радиус взрывоопасной зоны при аварийной разгерметизации стандартной цистерны емкостью 54 м 3 с сжиженным пропаном при получении пробоины площадью S 0 = 34 см 2 и при мгновенной разгерметизации цистерны (проливе всего количества СУГ).

1. Масса газа в облаке ТВС при длительном истечении СУГ из цистерны определяется по формуле (3.6):

М р = 36 · 520 · 0,0034 · 1/2 = 2630 кг.

2. Радиус загазованности при S 0 = 34 см 2 определяется по формуле (3.1).

Х нкпр = 14,6 · (2630/1,78 · 2) 0,33 = 132,7 м

Аналогичный результат можно получить без расчета по таблицам, где при S 0 = 38 см 2 расход газа равен G = 3 кг · с -1 . При таком расходе газа и скорости ветра 0,5 м/с глубина зоны загазованности составит 100 м. По упрощенной формуле для оперативных расчетов (3.3) получается приближенный результат:

Х нкпр = 92 · 2,63 0, 33 = 127 м.

3. При мгновенной разгерметизации цистерны и степени заполнения цистерны е = 0,9, согласно п. 3.1.3 масса паров (М р) в облаке для низкокипящих СУГ определяется по формуле (3.4):

М = 0,9 · 54 · 0,52 = 25 т;

М р = 0,62 · М = 0,62 · 25 = 15,5 т.

Радиус взрывоопасной зоны по формуле (3.3) составит:

Х нкпр = 92 · М р 0,33 = 92 · 15,5 0,33 = 230 м.

По формуле (3.1) получается более точный результат:

Х нкпр = 14,6 · (15500/1,78 · 2) 0,33 = 238 м

Для оперативных расчетов результат, полученный по формуле (3.3) практически не отличается от результата расчета по формуле (3.1) и может быть принят за основу при расчетной температуре воздуха t р, 28 0 C.

В условиях низких температур воздуха плотность паров СУГ растет, а радиус загазованной зоны уменьшается незначительно. Так, например, при t р = -40 0 C с п, = 2,3 кг · м -3 радиус взрывоопасной зоны Х нкпр = 220 м. Поэтому приведенные выше упрощенные формулы можно использовать для практических расчетов.

Определить радиус зон поражения и величину избыточного давления во фронте ударной волны при взрыве облака ТВС при аварии цистерны с пропаном.

1. Определяются границы зон поражения при истечении СУГ из пробоины.

Масса газа в облаке ТВС принимается по п. 1.1 Примера 1:

М р = 2630 кг = 2,63т.

Границы зон поражения людей:

тяжелые поражения - R 1 = 32 · 2,63 1/3 = 44м,

порог поражения - R 2 = 360 · 2,63 1/3 = 496 м.

Границы повреждения зданий:

полные разрушения - R 1 = 32 · 2,63 1/3 = 44 м,

сильные разрушения - R 2 = 45 · 2,63 1/3 = 62 м,

средние разрушения - R 3 = 64 · 2,63 1/3 = 88 м,

умеренные разрушения - R 4 = 120 · 2,66 1/3 = 166 м,

малые повреждения - R 5 = 360 · 2,66 1/3 = 496 м.

2. Определяются относительные величины расстояний Х р и величины избыточного давления ДP на расстояниях примера.

Относительная величина расстояния определяется по формуле (3.8):

Х р = R 1 / (0,42 · М р) 1/3 = R 1 / (0,42 · 2,63) 1/3 = R 1 /1,0.

для людей: R 1 = 44 м, ДP = 100 кПа;

R 2 = 496 м, ДP = 3 кПа;

для зданий: R 1 = 44 м, Х р = 44 м, ДP = 100 кПа;

R 2 =62 м, Х р = 62 м, ДP = 55 кПа;

R 3 = 88 м, Х р = 88 м, ДP = 30 кПа;

R 4 = 166 м, Х р = 166 м, ДP = 15 кПа;

R 5 = 496 м, Х р = 496 м, ДP = 3 кПа.

Полученные результаты совпадают с данными с небольшими отклонениями.

3. При мгновенной разгерметизации цистерны масса газа в облаке ТВС составляет М р = 15,5 т. Границы зон поражения с соответственно изменятся, а величины избыточного давления ДP останутся без изменения. Ниже приводятся результаты расчетов по изложенной выше методике для людей. Границы зон поражения:

тяжелые поражения - R 1 = 32 · 15,5 1/3 = 80 м,

порог поражения - R 2 = 360 · 15,5 1/3 = 900 м.

Относительная величина расстояния определяется по формуле (3.8)%.

Х р = R 1 / (0,44 · 15,5) 1/3 = R 1 /1,8.

Значения величин Х р и ДP составят:

R 1 = 80 м, Х р = 80/1,8= 44; ДP = 100 кПа;

R 2 = 900 м, Х р = 900/1,8= 500; ДP = 3 кПа.

Определить ожидаемую плотность теплового излучения на расстоянии r = 33 м от пожара пролива ЛВЖ.

Исходные данные:

В результате разгерметизации трубопровода произошла утечка и загорание бензина на площади 34 м 2 . Скорость ветра незначительна.

Для расчета диаметра и радиуса пламени используется формула (3.25):

d n = (4 · S p /р) 0,5 =(4 · 33/3,14) 0,5 = 3,4 м; r п = 10 м.

Определяется средне поверхностная плотность теплового излучения факела пламени: Е = 130 кВт/м 2 . По формуле (3.27) определяется коэффициент облученности ц между факелом пламени и элементарной площадкой на поверхности облучаемого объекта:

По формуле (3.26) определяется величина плотности теплового излучения q на расстоянии 21 м от пожара: q = Е · ц = 130 · 0,033 = 4,3 кВт · м -2 . Данное значение плотности теплового излучения не вызывает воспламенение горючих материалов.

Определить ожидаемую плотность теплового излучения на расстоянии r = 80 м от огненного шара и оценить опасность излучения. Исходные данные:

В результате столкновения двух цистерн с СУГ произошел пожар пролива вещества.

От теплового воздействия пожара пролива произошел взрыв второй цистерны с нагрузкой 24 т СУГ с образованием огненного шара.

По формулам (3.28) - (3.30) определяются масса огненного шара, его радиус и время существования:

М ош = 0,6 · М = 0,6 · 24 = 14,4 т;

t ош = 4,5 · М ош 1/3 =4,5*2,4= 10,8 с.

По формуле (3.27) определяется ц коэффициент облученности между факелом пламени и элементарной площадкой на поверхности облучаемого объекта при r п = R ош = 70м и r = 80м:

По Приложению 5 определяется средне поверхностная плотность теплового излучения факела пламени Е = 200 кВт/м 2 . По формуле (3.26) определяется величина плотности теплового излучения q на заданном расстоянии: q = Е · ц = 200 · 0,206 = 41,2кВт · м -2 . Данное значение плотности теплового излучения при времени облучения 10,8 с не вызывает воспламенение горючих материалов. Вероятность поражения людей тепловым потоком зависит от индекса дозы теплового излучения (I), который определяется из соотношения (3.31):

I = t ом · (1000 · q) 4/3 = 10,8· (1000 · 41,2) 4/3 = 1,62 · 10 7 .

Доля пораженных тепловым излучением определяем составляет около 50%, получивших ожоги II степени, и 15%, получивших смертельное поражение.

Провести оценку пожарной обстановки при аварии с ЛВЖ и СУГ на сортировочной станции.

Исходные данные:

При проведении маневренных работ произошло столкновение цистерны с ЛВЖ (керосин) и цистерны, содержащей СУГ (пропан). Цистерны стандартные объемом соответственно 61,2 и 54 м 3 , загрузка ЛВЖ 42 т, загрузка СУГ 24 т, степень заполнения 0,85.

В результате столкновения цистерна с ЛВЖ получила пробоину площадью 37см 2 , из которой начал вытекать керосин. Через 60,5 мин. Пролитый керосин воспламенился.

В результате теплового воздействия происходит взрыв цистерны с СУГ с образованием огненного шара.

1) Производится оценка времени и площади разлива ЛВЖ.

Определяем время истечения ЛВЖ. В данном случае при площади пробоины 37 см 2 время полного истечения. Расход керосина из пробоины и средняя скорость определяются по формулам (3.20) и (3.21):

2,22 м · с -1 ,

G = 60 · 2,22 · 800 · 0,0037 = 405 кг · мин -1 .

На 68-ой минуте согласно п. 3.2.6 по формуле (b 1) площадь разлива составит:

S p (ф) = (0,00625 · G) · ф = (0,00625 · 405) · 60,5 = 159 м 2 .

Длина и ширина фронта пожара пролива определяются исходя из условия прямоугольной формы его распространения (п.6.1.4):

где S п - площадь пожара, м 2 ;

а - длина фронта пожара, м;

b - ширина фронта пожара, м.

Ширина фронта пожара при S п = S р = 159 м 2 составляет:

b = (S п /3,5) 1/2 = (159/3,5) 1/2 =5,7 м.

Длина фронта пожара:

а = 3,5 · b = 3,5*5,7=20м.

2) Производится расчет возможного количества вагонов, попавших в зону пожара, в соответствии с п.6.4.

Общее количество вагонов в очаге пожара:

N = S п · К р / S в = 159 · 0,75/80 =2 шт.

количество N к вагонов на крайних железнодорожных путях по длине фронта пожара:

N к = а/(I в + 1) = 20/(12 + 1) = 2 шт.;

количество N ш вагонов на крайних железнодорожных путях по ширине фронта пожара:

N к = b/r жд = 5,7/2 = 3 шт.

Таким образом, в зоне пожара могут находиться 3 цистерны (вагона).

3) Производится расчет зоны опасного воздействия теплового излучения пожара пролива, т.е. зоны возможного распространения пожара при q кр > 12,5 кВт/м 2 .

Масса пролитого керосина согласно п.3.2.6 по формуле (а) составит:

М (ф) = G · ф = 405 · 60,5 = 24,5 т.

В этом случае плотность теплового излучения на расстоянии 50 м составит 12,5 кВт · м -2 . Таким образом, граница опасной зоны (зоны возможного распространения пожара) расположена на расстоянии 50 м от границы пролива. На рис. П. 16.1 показана зона, т.е. при нахождении в зоне возможного распространения пожара горючих материалов произойдет их воспламенение.

4) Через 15-25 мин после начала теплового воздействия пожара пролива на цистерну с СУГ произойдет взрыв этой цистерны с образованием огненного шара. По формулам (3.28) - (3.30) определяются масса огненного шара, его радиус и время существования:

М ош = 0,6 · М = 0,6 · 24= 14,4 т;

R ош = 29 · М ош 1/3 = 29 · 2,4 = 70 м;

t ош = 4,5 · М ош 1/3 = 4,5*2,4=10,8 с.

Полагается, что в зоне радиусом 70 м (радиус огненного шара) все горючие материалы воспламеняются. По формуле (3.27) определяется ц коэффициент облученности ц и величина плотности теплового излучения q (кВт/м 2) на различных расстояниях от огненного шара. Т.к. при величине теплового излучения более 85 кВт/м 2 происходит воспламенение через 3-5 с, полагается, что при времени облучения 11 с (времени существования огненного шара) воспламенение произойдет при q кр = 60 кВт/м 2 . Такой величине плотности соответствует расстояние от поверхности огненного шара - 50 м. Таким образом, зона возможного распространения пожара от воздействия огненного шара составляет 120 м (70 м + 50 м) от цистерны с СУГ (места аварии).

Зоны возможного распространения пожара при аварии с проливом

ЛВЖ и образованием огненного шара (масштаб 1:1000):

1 - пожар пролива ЛВЖ;

2 - зона возможного распространения пожара пролива;

3 - фрагмент зоны возможного распространения пожара от теплового воздействия огненного шара.

Список используемой литературы

1. Методические указания «Определение зон воздействия опасных факторов аварий и пожаров на объектах железнодорожного транспорта» П.Л. Девлишен, В.П. Аксютин, Г.Г. Нестеренко, Г.М. Гроздов, И.Р. Хасанов, Е.А. Москвилин, В.С. Рыжиков. - М, 1997. - 56 с.

2. Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств. - М.: Металлургия. 1988. - 126 с.

5. Инструкция по организации аварийно-восстановительных работ на железных дорогах Российской Федерации. ЦРБ-353. М.: МПС РФ, 1996. - 32 с.

Размещено на Allbest.ru

...

Подобные документы

    Определение радиуса взрывоопасной зоны при аварийной разгерметизации стандартной цистерны со сжиженным пропаном. Расчет величины избыточного давления во фронте ударной волны при взрыве облака топливно-воздушных смесей при аварии цистерны с пропаном.

    контрольная работа , добавлен 19.05.2015

    Определение избыточного давления при взрыве газовоздушной смеси; избыточного давления во фронте ударной волны; категории взрывоопасности. Оценка степени поражения людей; устойчивости энергоблока ГРЭС к воздействию ЭМИ. Уровень радиации и доза облучения.

    контрольная работа , добавлен 14.02.2012

    Методика оценки химической обстановки, глубина распространения облака, зараженного АОХВ, на открытой местности. Определение размеров зон наводнений при разрушении гидротехнических сооружений. Значение давления ударной волны при взрыве газовоздушной смеси.

    методичка , добавлен 30.06.2015

    Поражающие факторы наземного ядерного взрыва и их воздействие на человека. Расчет поражающего действия ударной воздушной волны. Оценка химической обстановки на объекте экономики при разрушении емкости со СДЯВ. Оказание помощи при отравлении аммиаком.

    контрольная работа , добавлен 25.05.2013

    Давление срабатывания предохранительного клапана в резервуаре. Температура кипения гексана при постоянном давлении. Основные параметры волны давления. Удельная теплоемкость жидкой фазы. Удельная теплота испарения при нормальной температуре кипения.

    задача , добавлен 12.06.2015

    Определение избыточного давления, ожидаемого в районе при взрыве емкости. Тяжесть поражения людей при взрыве газовоздушной смеси. Зона детонационной волны. Энергия взрыва баллона. Скоростной напор воздуха. Коэффициент пересчета уровня радиации.

    контрольная работа , добавлен 14.02.2012

    Определение дозы излучения, которую получают рабочие на экскаваторах. Допустимая продолжительность спасательных и других неотложных работ. Определение размеров и площади зоны химического заражения. Радиус действия детонационной волны и продуктов взрыва.

    контрольная работа , добавлен 15.06.2013

    Методика расчёта степени воздействия ударной волны на объекты и человека при детонационном взрыве газо-паровоздушного облака. Степень теплового воздействия при диффузионном горении горючей жидкости после ее аварийного разлива, при горении огненного шара.

    курсовая работа , добавлен 16.11.2010

    Оценка устойчивости работы объекта экономики в условиях заражения атмосферы химически опасным веществом. Расчет ударной волны ядерного взрыва. Оценка устойчивости объектов к воздействию ударной волны, возникающей при взрывах газовоздушных смесей.

    контрольная работа , добавлен 29.12.2014

    Кратковременное высвобождение внутренней энергии, создающее избыточное давление. Особенности физического взрыва и его энергетический потенциал. Тротиловый эквивалент. Определение категории помещений и зданий по взрывопожарной и пожарной опасности.

Характерными особенностями взрывов ТВС являются:

Возникновение разных типов взрывов: детонационного, дефлаграционного или комбинированного;

При взрывах образуется 5 зон поражения: бризантная (детонационная), действия продуктов взрыва (огненного шара), действия ударной волны, теплового поражения и токсического задымления;

Зависимость мощности взрыва от параметров среды, в которой происходит взрыв (температура, скорость ветра, плотность застройки, рельеф местности);

Для реализации комбинированного или детонационного взрыва для ТВС обязательным условием является создание концентрации продукта в воздухе в пределах нижнего и верхнего концентрационного предела.

Дефлаграция – взрывное горение с дозвуковой скоростью.

Детонация – процесс взрывчатого превращения вещества со сверхзвуковой скоростью.

Расчет радиусов зон поражения (R ) и избыточного давления во фронте ударной волны (DР ф) при взрыве производится по следующим формулам:

1. Бризантная зона (зона детонации):

где М – масса ТВС в резервуаре (кг). За М принимается 50 % вместимости резервуара при одиночном хранении и 90 % – при групповом хранении.

Для бризантной зоны DР ф =1750 кПа.

2. Зона продуктов горения (зона огненного шара):

Радиус зоны:

(2)

Избыточное давление во фронте ударной волны рассчитывается:

(3)

Для остальных зон их радиусы рассчитываются по следующей формуле:

. (4)

3. Зона действия ударной волны:

Слабые разрушения – повреждения или разрушения крыш и оконных и дверных проемов. Ущерб – 10…15 % от стоимости зданий.

Средние разрушения – разрушение крыш, окон, перегородок, чердачных перекрытий, верхних этажей. Ущерб – 30…40 %.

Сильные разрушения – разрушения несущих конструкций и перекрытий. Ущерб – 50 %. Ремонт нецелесообразен.

Полное разрушение – обрушение зданий.

Тепловой импульс (кДж/м 2) определяется по формуле:

где I – интенсивность теплового излучения взрыва ТВС на расстоянии R , кДж/м 2 ×с

, (6)

где Q 0 – удельная теплота пожара, кДж/м 2 ×с; F – угловой коэффициент, характеризующий взаимное расположение источника горения и объекта

(7)

Т – прозрачность воздуха

(8)

t св – продолжительность существования огненного шара (с)

(9)

Расчет

радиусов зоны детонации r0 при взрыве участков газопроводов

Исходные данные :

d = 1,42 м; Рг = 7,5 МПа; t = 400С; W = 1 м/с; m=0,8.

Расчет:

1..gif" width="167" height="42"> = 254 м3/кг.

3. М = = 148,1 кг/с.

4. r0 = 12,5 = 152 м.

Отсюда зона детонации будет равна: 2r0= 304 м (с каждой стороны трассы газопровода).

Используя таблицу 21 получаем радиус зоны возможных сильных разрушений, границы которой определяются величиной избыточного давления 50 кПа:

r = 4r0 =608 м

Аналогичные расчёты выполнены и для других участков газопроводов. Полученные данные сведены в таблицу 22:

Таблица 22 - Радиусы зон поражения при воздействии избыточного давления

Степень поражения

Избыточное давление,

Радиус зоны, м для газопроводов

Радиус зоны детонации r0

Разрушение зданий:

Полное разрушение зданий

50 %-ное разрушение зданий

Средние повреждения зданий

Умеренные повреждения зданий

Поражения людей:

Крайне тяжелые

Тяжелые травмы

Средние травмы

Легкие травмы

Пороговые поражения


Расчет вероятных зон действия поражающих факторов при разрушении (разгерметизации) технологического оборудования котельных (А-2)

В результате разрушения газопроводов и технологического оборудования с горючими веществами возможен их выброс внутрь здания или на открытую площадку с образованием газопаровоздушной смеси (ГПВС). Серьезную опасность для персонала, и технологического оборудования представляет взрыв образовавшейся ГПВС.

Процесс горения со стремительным высвобождением энергии и образованием при этом избыточного давления (более 5 кПа) называется взрывным горением.

Различают два принципиально разных режима взрывного горения: дефлаграционный и детонационный.

При дефлаграционном горении распространение пламени происходит в слабо возмущенной среде со скоростями значительно ниже скорости звука, давление при этом возрастает незначительно.

При детонационном горении (детонации) распространение пламени происходит со скоростью, близкой к скорости звука или превышающей ее.

Инициирование (зажигание) газовоздушной смеси с образованием очага горения возможно при наличии источника зажигания.

К основным факторам, влияющим на параметры взрыва, относят: массу и тип взрывоопасного вещества, его параметры и условия хранения или использования в технологическом процессе, место возникновения взрыва, объемно-планировочные решения сооружений в месте взрыва.

Взрывы на котельной можно разделить на две группы - в открытом пространстве и производственном помещении.

Аварии со взрывом могут произойти на пожаровзрывоопасных объектах. К пожаровзрывоопасным объектам относятся объекты, на территории или в помещениях которых находятся (обращаются) горючие газы, легковоспламеняющиеся жидкости и горючие пыли в таком количестве, что могут образовывать взрывоопасные горючие смеси, при горении которых избыточное давление в помещении может превысить 5 кПа. В этом случае газо-, паро-, пылевоздушная смесь займет частично или полностью весь объем помещения.

Котельная:

Сценарий С-1 : (Разгерметизация технологического оборудования, утечка газа, воспламенение на месте выброса, ликвидация горения).

Масса природного газа, который может поступить в котельную – 12 кг.

Природный газ не токсичен. Однако из-за того, что газ не пригоден для дыхания, то он может представлять опасность для персонала внутри помещения котельной. Необходимо соблюдать правила пожарной безопасности , не пользоваться открытым огнём и использовать средства индивидуальной защиты (изолирующий противогаз). При этом от удушья может погибнуть 1 человек из числа персонала котельной.

Сценарий С-2 (Разгерметизация технологического оборудования, утечка газа, воспламенение на месте выброса, горение).

Исходные данные:

Частота реализации сценария год -1: 4*10-5

Масса вещества, кг: 12

Рассматриваемые сценарии:

Пожар утечки.

Результаты расчета:

(поражающие факторы пожара не выйдут за пределы котельной)

Сценарий С-3 (Разгерметизация оборудования, утечка газа, воспламенения на месте выброса нет, образование облака ТВС, источник зажигания, взрыв ТВС с ударной волной).

Исходные данные:

Частота реализации сценария год -1: 1*10-5

Наименование вещества: природный газ

Масса вещества, кг: 12

Тип (класс) взрывоопасного вещества: 4 класс .

Класс окружающего пространства: 3 класс .

Режим взрывного превращения облака: 5 режим.

Рассматриваемые сценарии:

Взрыв ТВС.

Результаты расчета.

Таблица 23 - Радиусы зон поражения при воздействии избыточного давления

Степень поражения

Избыточное давление,

Радиус зоны, м

Разрушение зданий:

Полное разрушение зданий

50 %-ное разрушение зданий

Средние повреждения зданий

Умеренные повреждения зданий

Малые повреждения (разбита часть остекления

Поражения людей:

Крайне тяжелые

Тяжелые травмы

Средние травмы

Легкие травмы

Пороговые поражения


Расчёты погибших, пострадавших и ущерб при ЧС на объектах и сетях газового хозяйства:

Расчёт количества погибших и пострадавших:

Для определения возможного числа пострадавших при поражении людей опасными поражающими факторами возможных аварийных ситуаций зоны воздействия опасных факторов сопоставляются с объектами воздействия и количеством людей, которые могут находиться в данных зонах.

Число летальных исходов поражения определяется исходя из значений условной вероятности поражения человека опасными факторами аварии. Условные вероятности поражения человека опасными факторами аварии определяются на основании значений пробит-функции, рассчитываемых по ГОСТ Р 12.3.047-98. Кроме того, согласно Методическим рекомендациям МЧС России от 01.01.2001 № . для расчёта количества погибших и пострадавших использована таблица 24 «Приближённая оценка плотности населения с, чел./га»:

Таблица 24 - Приближённая оценка плотности населения с, чел./га (чел/м2):

Описание территории

Район фермерских хозяйств, хутора

5/0,0005

Усадьбы

10/0,001

Деревни, зона индивидуальной застройки