Все о тюнинге авто

Экономия всегда актуальна. Экономия всегда актуальна Основные понятия. Классификация механических передач

Существует два основных подхода к определению коэффициента безопасности: статистический и экономический.

Статистические методы, основанные на необходимом уровне сервиса:

· Вероятность дефицита запасов за один цикл оборота запасов (или за период между двумя перезаказами),

· Вероятность удовлетворения спроса,

· Уровень готовности – характеризуется периодом, во время которого запасы должны быть «положительными»,

· Оптимальная частота дефицита запасов за отчетный период.

Экономические методы, основанные на оптимизации затрат:

· Допустимый уровень убытков вследствие отсутствия запасов на складе,

· Оптимальное соотношение затрат на хранение и убытков вследствие отсутствия запасов на складе.

Рассмотрим подробнее метод постоянного заказа в упрощенном виде.

Необходимо определить значение резервного запаса, для которого будет оптимальным соотношение затрат на хранение и убытков вследствие дефицита запасов.

Рассмотрим решение данной задачи при использовании системы управления запасами на основании метода постоянного заказа. Размер резервного запаса будет определять величину точки перезаказа. Решение данной проблемы не будет сказываться на оптимальном размере заказа, а будет влиять только на изменение точки перезаказа. Следовательно, мы оптимизируем два вида затрат:

Затраты на хранение резервного запаса , которые являются частью суммарных затрат на хранение и которые будут равны:

ТС = C h 1 *R, (9.32)

где C h 1 – затраты на хранение 1 единицы запасов за отчетный период, R – величина резервного запаса.

Убытки вследствие дефицита запасов , которые равны:

U = C d 1 *S*r, (9.33)

где C d 1 – убытки вследствие дефицита 1 единицы запасов на складе, S – вероятное количество раз дефицита запасов за отчетный период, r – средний объем дефицита запасов в единицах.

В данной задаче мы рассматриваем убытки в следствие дефицита запасов, которые не зависят от длительности дефицита, а зависят от объема дефицита и количества дефицитов за отчетный период. Модель, в которой данные убытки зависят от продолжительности дефицита, требует более сложных расчетов.

Алгоритм решения основан на методике маржинального или предельного анализа. В данной методике мы добавляем (или отнимаем) от исследуемого параметра по единице и анализируем влияние этого изменения на оптимизируемую величину. Если это влияние положительно, то мы продолжаем изменять этот параметр в том же направлении, пока оно не уменьшится до нуля. Ели влияние отрицательно, то мы изменяем параметр в другом направлении и двигаемся опять до нулевого влияния. При нулевом влиянии значение параметра оптимально. Алгоритм расчета показан на рис. 9.14. Данная методика достаточно часто применяется при нахождении оптимальных решений в экономическом анализе.


Рис. 9.14. Алгоритм расчета коэффициента безопасности

Положительный вклад (выигрыш – экономия затрат на хранение) от каждой дополнительной единицы будет оставаться постоянным при уменьшении резервного запаса.

Отрицательный вклад (потери – убытки вследствие дефицита запасов) от каждой дополнительной единицы будет увеличиваться при уменьшении резервного запаса, так как будет расти вероятность дефицита запасов (S).

Выигрыш больше потерь, тогда при уменьшении резервного запаса на каждую единицу мы получаем дополнительную прибыль до тех пор, пока выигрыш будет больше потерь.

Потери больше выигрыша, тогда увеличение резервного запаса приводит к уменьшению убытков.

Оптимальный размер резервного запаса получается при условии:

S*C d 1 = C h 1 , (9.33)

При этом условии (9.33.) выигрыш равен потерям.

Полный алгоритм расчета оптимизации затрат можно интерпретировать рис 9.15.

Рис. 9.15. Пример расчета коэффициента безопасности методом оптимизации затрат

· Если нам известны затраты на хранение (С h1) и убытки вследствие дефицита запасов (C d 1), мы можем подсчитать оптимальную частоту возникновения дефицита запасов за отчетный период, при котором суммарные затраты будут минимальны по формуле (9.33).

S = C h 1 /C d 1 – формула для расчета оптимальной частоты дефицита запасов (9.34)

· Зная оптимальную частоту дефицита запасов за отчетный период (S) и частоту заказов (N), мы можем рассчитать вероятность дефицита запасов (Р) за один цикл оборота запасов (или между двумя перезаказами):

Р = S / N – формула для расчета вероятности дефицита запасов за один период оборота запасов (9.35.)

· Величина (Р) непосредственно связана с коэффициентом безопасности (k) на основании правила нормального распределения вероятности. Коэффициент безопасности определяется на основании специальных таблиц, которые можно найти в любой литературе по управлению запасами.

Мы беседуем сегодня с заместителем директора одного из ведущих оте­чественных предприятий – производителей измерительных трансформаторов ООО «Электрощит-Ко» Виктором Владимировичем Легостовым .

– Виктор Владимирович, ООО «Электрощит-Ко» в этом году отмечает 10 лет с момента ввода в эксплуатацию первого трансформатора собственного производства. За счет каких аспектов вам удалось в столь относительно небольшой срок стать одним из лидеров отрасли?

– Если коротко – это правильно построенная система производства, важнейшим свойством которой является точное выполнение технических требований заказчика.

Используя европейскую технологию и оборудование, а также импортные материалы высокого качества, мы создаем изделия нестандартного исполнения, не имеющие аналогов в нашей стране.

– Почему зарубежные технологии, импортные материалы и оборудование? Не хотите поддерживать российского производителя?

– У нашего производства две ключевые специализации: производство трансформаторов по заданным заказчиком техническим характеристикам; производство трансформаторов для систем с повышенным требованием к безопасности.

К сожалению, на сегодняшний день оборудование и материалы, необходимые для производства такого уровня, не производятся в России. При этом мы постоянно ведем работу с отечественными поставщиками, пытаемся стимулировать улучшение качества их продукции. Убежден, что это и есть наилучшая поддержка производителя.

– Виктор Владимирович, расскажите, какие особенности отличают ваши трансформаторы от аналогов.

– Использование нашей технологии и импортных материалов позволяет нам маленький прибор насытить по максимуму, в отличие от аналогов других производителей, которые в такой же габарит, используя российские материалы, могут вложить гораздо меньше возможностей.

Сейчас многие производители научились делать трансформаторы с высокими классами точности, но создать прибор с набором требуемых заказчиком конкретных нестандартных параметров зачастую не удается. Некоторые из российских производителей сами заказывают у нас сложные трансформаторы.

Используемая нами программа расчета трансформатора позволяет в течение 10–15 минут произвести расчет любого трансформатора. Меняя и подставляя различные варианты параметров, мы получаем физическую модель трансформатора. Все реально рассчитанные варианты возможно изготовить. Большинство производителей изготавливают приборы конвейерно и, на выходе сделав измерения, фиксируют параметры, отправляют прибор на склад и потом, при появлении такого запроса, предлагают заказчику. Мы же изначально исходим из запроса и делаем такой прибор, который был заказан.

Более того, на сегодняшний день мы единственные в России комплектуем заказы магнитопроводами с идентичными параметрами намагничивания, что позволяет изготовить трансформаторы с идентичными электрическими характеристиками.
Кроме того, мы первыми в России стали проводить испытания изоляции по классу «А» с замером уровня частичных разрядов.

Применение наших трансформаторов на объектах атомной энергетики, таких, как Нововоронежские АЭС, Калининская АЭС, Белоярская АЭС, Кольская АЭС, подтверждает высокий уровень надежности и безопасности.

– Актуально ли сегодня производство трансформаторов по заданным эксплуатационным параметрам?

– Экономия всегда актуальна. Применение трансформаторов с параметрами, не отвечающими реальным требованиям систем учета и защиты, приводит к более значительным финансовым потерям из‑за увеличения токовой погрешности и выхода трансформаторов из заявленного класса точности.

Потребность в автоматизации и разделении цепей учета и измерения вызвала появление новых разработок, основными принципами которых являются малые габариты, увеличенное число обмоток, защита информации, технологичность, надежность, многовариантность характеристик.

В этом плане ООО «Электрощит-Ко» является законодателем мод в развитии трансформаторостроения России.

Нами впервые в России стали серийно производиться трансформаторы тока с классом точности 0,2S и 0,5S в сочетании с высокими нагрузками, с заданными конкретными значениями коэффициентов безопасности приборов и предельной кратности, с высоким током термической стойкости при малых номинальных токах, трансформаторы с разными коэффициентами трансформации измерительных и защитных цепей, переключением первичных токов для уменьшения или увеличения коэффициента трансформации.

– Посредством чего достигается высокий класс точности в ваших трансформаторах?

– Для трансформаторов с высоким классом точности мы используем сердечники из пермаллоя. Этот материал позволяет обеспечивать задаваемый класс точности, его физические свойства позволяют преобразовать сигнал с минимальными потерями. Мало кто использует пермаллой, он достаточно сложен в использовании и не производится в России. Проще использовать аморфные сплавы, но они не имеют механической прочности, сердечник из такого материала нужно помещать в специальный короб, что увеличивает габарит трансформатора.

– Трансформаторы с переключением. Расскажите, в каких случаях возникает в них необходимость.

– Это трансформаторы двойного использования. Первая сфера их применения – когда производство строится на старых мощностях. Например, ранее все уставки были сделаны на 600 А по первичному току, а в реальности в цепях уже 250‑300 А. ­

Трансформатор с переключением – это прибор, который может работать как 300 / 5 и как 600 / 5. Одним трансформатором можно обеспечивать измерение и защиту как на более низкий, так и на более высокий уровень с возможностью увеличения в будущем мощности сетей.

Вторая сфера применения – когда необходимо сохранить старую систему технического учета и релейной защиты, а коммерческий учет сделать по более низким мощностям. Для решения этой задачи возможно применение трансформатора с разным коэффициентом трансформации, т. е. для коммерческого учета обмотка будет 300 / 5, а защитная обмотка и технический учет будет 600 / 5. Все это возможно сделать в одном корпусе. При этом вторичная обмотка для коммерческого учета рассчитывается на длительное время работы при 600 А.

– Коэффициент трансформации выдерживается строго 1:2?

– Пропорции могут быть разными, например 500 А на 600 А, 600 А на 1000 А, на 1500А, 600 А на 800 А. Бывает и 1:3, но это сложно в исполнении. Всегда необходимо рассматривать конкретные задачи и просчитывать любой прибор индивидуально.

– Как правильно задать вторичные нагрузки?

– Это очень важный момент. Программа, которую мы применяем, позволяет сделать расчет нагрузок с погрешностью, максимально приближенной к нулевой отметке в коридоре токовых угловых погрешностей.

Для примера рассмотрим зависимость абсолютной погрешности трансформатора тока с коэффициентом трансформации 100 / 5 класса точности 0,5, с номинальной нагрузкой 10 ВА (рис. 1) Из этой зависимости видно, что уменьшение или увеличение прилагаемой нагрузки на трансформатор тока приводит к значительному увеличению абсолютной величины погрешности измерений. На графике видны возможные варианты выхода из класса вследствие недогрузки или перегрузки, если реально трансформатор был рассчитан на 10 ВА.

– Что такое коэффициент безопасности и обязательно ли его задавать?

– Это коэффициент, который показывает, во сколько раз увеличится вторичный ток на измерительной обмотке, если ток первичной цепи резко возрастет. Измерительная обмотка построена таким образом, что при возникновении короткого замыкания сердечник быстро насыщается и ток в ней перестает расти. Например, вторичный ток 5 А, а коэффициент 10, тогда максимально возможный ток, который возникнет во вторичной обмотке, будет равен 50 А.

График (см. рис. 2) показывает разницу коэффициента безопасности приборов при использовании разных марок электротехнической стали. Из графика видно, что даже у трансформатора ТЛО-10 при снижении нагрузки на измерительной обмотке коэффициент безопасности приборов резко возрастает и уже не может обеспечить защиту измерительных приборов в момент короткого замыкания в первичной цепи. При проектировании системы учета и защиты необходимо учитывать фактическую вторичную нагрузку во вторичной цепи измерительной обмотки и коэффициент безопасности приборов, который должен быть указан в сопроводительной документации на конкретный трансформатор. В цепях учета, уже находящихся в эксплуатации, эти параметры можно с достаточной точностью измерить и привести систему в соответствие.

Используя трансформаторы с правильно выбранным коэффициентом безопасности приборов в действующих сетях, нет необходимости применять дополнительные меры защиты для счетчиков старого образца.

– Какой диапазон коэффициента безопасности приборов и от чего он зависит? Если заказчик задает конкретный коэффициент, возможно ли его сделать?

– Диапазона коэффициента не существует, это всегда конечное число и зависит практически только от применяемых материалов, их качества и характеристик, технологии изготовления, и заказчик может выбрать коэффициент безопасности по своему усмотрению.

– Расскажите еще об одном важном параметре – коэффициенте номинальной предельной кратности обмоток защиты. Насколько важно его задавать при заказе трансформатора?

– Очень часто потребители или проектные организации запрашивают кривую предельной кратности. Один из основных параметров, который заносится в паспорт прибора, – напряжение намагничивания, точка, в которой кривой участок переходит в линейный. Во сколько бы ни вырастал ток в первичной обмотке, на вторичной обмотке ток расти перестает. Если мы рассматриваем коэффициент безопасности приборов и предельную кратность, физическая суть у этих параметров одинакова.

Коэффициент предельной кратности указывает, до какого значения будет расти ток при коротком замыкании в первичной обмотке, до какого предела мы должны питать релейную защиту, чтобы она сработала. Коэффициент предельной кратности равен 10, это говорит о том, что при коротком замыкании в первичной цепи ток во вторичной обмотке будет до 50 А, не более. Если, предположим, релейная защита рассчитана на срабатывание при токе 75 А, то коэффициента 10 будет недостаточно, т. е. короткое замыкание защита «не увидит», поэтому заказчик ставит предельную кратность, например 15, но это предельное значение, и надо брать 16, чтобы релейная защита среагировала и отключила все приборы до того момента, как сердечник начнет насыщаться.

Кривая предельной кратности необходима для расчета работы автоматики при использовании стандартного прибора. На нашем предприятии потребитель может заказать трансформатор с любой кратностью при необходимой нагрузке.

– Виктор Владимирович, на ООО «Электрощит-Ко» работают зарубежные специалисты. Какие функции они выполняют?

– Зарубежные специалисты работают на предприятии в сфере обеспечения качества продукции и разработки новых продуктов. Кроме того, они являются консультантами по улучшению техпроцесса, по эргономике производства, по планированию новых производственных мощностей. Без ложной скромности хочу отметить, что производственный процесс в ООО «Электрощит-Ко» не хуже и даже лучше некоторых зарубежных аналогичных производств. При разработке нашего производства нами были рассмотрены и учтены ошибки других производителей.

– В чем конкретно воплотился этот отрицательный опыт?

– Ни в одном производстве в мире нет трехступенчатого метрологического контроля по всей технологической цепочке.

Система маршрутных карт на каждый прибор, контроль предыдущих технологических операций последующими, мотивация персонала в сфере контроля и обеспечения качества позволяют полностью исключить изготовление бракованных приборов. Процент брака производства на сегодня не поднимается выше 0,1 процента.

– Виктор Владимирович, вы сегодня говорили о тонкостях правильного выбора параметров трансформаторов тока. При заинтересованности в разъяснении ваши специалисты могут на местах дать консультации по этим вопросам?

– Технический центр нашей компании проводит семинары для специалистов проектных и эксплуатационных организаций на следующие темы:
оптимальный выбор параметров измерительных трансформаторов, максимально адаптированный под конкретные системы учета;
совмещение релейных систем защиты и автоматики с техническим учетом;
расчет и изготовление релейных обмоток с необходимой предельной кратностью.

В ближайшее время всех приглашаем на выставку «Энергетика и электротехника» в Санкт-Петербурге 22‑25 мая (выставочный комплекс «Ленэкспо», павильон 7, стенд № F24) и на выставку «Электро-2012» в Москве 13‑16 июня.

– Благодарим вас за столь подробную и интересную информацию. Надеемся, что многие технические специалисты заинтересуются приведенными данными. Ждем от вас новых публикаций.

Коэффициентом безопасности называют отношение предельных напряжений к максимальным напряжениям, возникающим при ра­боте детали.

1. Коэффициент безопасности при статических нагрузках можно определять по формулам:

для пластичных материалов

для хрупких материалов

(1.11)

2. Коэффициент безопасности при переменных (циклических) нагрузках с учетом основных факторов, влияющих на предел вы­носливости, для любого материала определяют по фор­мулам:

при симметричном цикле

(1.12)

при асимметричном цикле, когда с возрастанием нагрузки цикл остается подобным рабочему , т. е. возрастание напряжений происходит по направлению ОМN (рис. 1.3):

Рис. 1.7. Диаграмма предельных напряжений

(1.13)

при асимметричном цикле, ког­да среднее напряжение не меняет­ся, а амплитуда растет, т. е. по линии МР (рис. 1.3):

(1.14)

При совместном действии нор­мального σ а и касательного τ а на­пряжений (изгиб, кручение), из­меняющихся синфазно,

(1.15)

где s σ ; s τ – коэффициент безопасности по нормальным и касатель­ным напряжениям (1.24. . .1.26) с заменой σ на τ.

Допустимое значение коэффициента безопасности [s] назначают на основании опыта проектирования и эксплуатации машин или рассчитывают с учетом требуемой надежности деталей. При отсут­ствии необходимых данных допустимый коэффициент безопасности приближенно можно определить на основе так называемого диф­ференциального метода как произведение частных коэффициен­тов :

где s 1 – коэффициент, учитывающий степень точности расчета. Рас­чет приводить к завышенным напряжениям и степень завышения определить трудно: s 1 = 1, расчет приводит к заведомо заниженным напряжениям; s 1 = 1,2...1,3; s 2 – коэффициент, учитывающий одно­родность механических свойств материала. Для деталей, изготов­ленных из углеродистых и легированных сталей при высокой темпе­ратуре отпуска, s 2 = 1,2...1,3; для деталей, изготовленных из высоко­прочных сталей с пониженными пластическими свойствами (с низ­кой температурой отпуска) и высокопрочных чугунов, s 2 = 1,3...1,5; для деталей из стального литья s 2 = 1,5...2; для чугунных деталей s 2 = 2...2,5; для деталей из цветных сплавов (кованых и катаных) s 2 = 1,5...2; s 3 – коэффициент, учитывающий степень ответственно­сти детали. Поломка детали не вызывает остановки машины: s 3 = 1; поломка детали вызывает остановку машины: s 3 = 1,1...1,2; по­ломка детали вызывает аварию: s 3 = 1,2…1,3.

Коэффициент безопасности по пределу прочности выбирается довольно большим. Например, для высокопрочных сталей – около 2...2,5, для серого чугуна 3...3,5, для стального и цветного литья 2,5...3, для особо хрупких материалов 4...6.

Коэффициент безопасности по пределу текучести для пластич­ных материалов (сталей) при достаточно точных расчетах выбира­ют 1,2...1,5 и выше. Коэффициент безопасности при контактных нагружениях можно принять 1,1...1,2. Коэффициент безопасности по пределу выносливости – 1,3...2,5. Например, при недостаточно пол­ном объеме экспериментальных данных о нагрузках и характери­стиках материала или ограниченном числе натурных испытаний [s] = 1,5...2; при малом объеме или отсутствии экспериментальных испытаний и пониженной однородности материала (литые и свар­ные детали) [s] = 2...3.

Пример. Определить коэффициент безопасности для вала d = 60 мм с од­ной шпоночной канавкой, который нагружен в опасном сечении изгибающим мо­ментом М = 1,5 · 10 6 Н · мм и крутящим моментом Т = 4 · 10 6 Н · мм. Материал вала – сталь 40ХН (табл. 1.2, σ b = 1000 Н/мм 2 ; σ -1F = 530 Н/мм 2). Поверх­ность вала шлифованная. Напряжение изгиба изменяется по симметричному цик­лу, кручения – по пульсирующему. Срок службы N LE > N 0

Решение.

1. При сложном напряженном состоянии (изгиб и кручение) ко­эффициент безопасности определяется по выражению (1.15)

где s σ , s τ – коэффициент безопасности по изгибу и кручению.

2. По формуле определяем коэффициент безопасности по нормальным напряжениям при симметричном цикле изгиба:

Здесь амплитудное и наибольшее напряжения цикла равны и определяются по формуле:

где W = 18 760 мм 3 – момент сопротивления изгибу вала d = 60 мм, ослабленно­го шпоночным пазом.

3. Находим эффективный коэффициент концентрации напряжений для валов с одной шпоночной канавкой при изгибе (σ b = 1000 Н/мм) К σ = 2,3; масштабный фактор ε = 0,77; коэффициент состояния по­верхности β = 0,88.

4. Коэффициент безопасности по касательным напряжениям при пульсиру­ющем цикле нагружения по формуле:

5. По выражению определим амплитудное и среднее напряжения:

где W р = 4 · 10 4 мм 3 - момент сопротивления кручению вала ослабленного шпо­ночным пазом.

Лениво пока фотографии из командировки выкладывать. Потому - продолжу "умничать".

Расчет любой конструкции на прочность, необязательно самолёта, начинается с определения собственно нагрузки на эту конструкцию. Необходимо определить, что мы в итоге хотим получить от изделия, какие нагрузки оно должно выдерживать. Понятное дело, я буду говорить об нагрузках на самолет.


Очевидно, что при полете крыло самолета нагружено распределенной нагрузкой - подъемной силой. На заглавном рисунке эта эпюра нагрузки показана на правой консоли и обозначена буквой q.

Интенсивность этой распределенной нагрузки должна быть такой, чтобы общая результирующая подъемной силы была равна:
Y = f*Ny*m, где:
f - коэффициент безопасности (не путать с запасом прочности)
Ny - максимальная эксплуатационная перегрузка (та, которая записана в РЛЭ в разделе ограничения)
m - масса летательного аппарата.

По порядку об этих трех параметрах.
Коэффициент безопасности f показывает во сколько раз разрушающая нагрузка (перегрузка в общем случае) больше максимальной эксплуатационной. Авиационные конструкции расчитываются не по допускаемым напряжениям, как в общем машиностроении, а по разрушающим. Потому что, понятно - культура веса, минимизация массы - основное направление деятельности инженеров при проектировании самолетов. Относительная близость к разрушающим нагрузкам компенсируется высокой точностью определения нагрузок на самолет и применением различных методов расчета, для получения уверенного результата расчета.

Диапазон величин коэффициента безопасности для многоразового летательного аппарата лежит в пределах f = 1.5....2.5 в зависимости от режима полета и типа конструктивного элемента. Максимальные коэффициенты безопасности применяют к герметичным конструкциям, которые нагружены избыточным давлением - баллоны высокого давления, гермокабины, пассажирские салоны. Почему минимальное значение коэффициента безопасности равно 1.5 для самолетов? Одним из требований к авиационной конструкции гласит, что в самолете должны отстутствовать необратимые пластические деформации материала. То есть при достижении предельных эксплуатационных перегрузок самолет не должен, грубо говоря, потерять форму безвозвратно. Это уже завязано на параметр материала - предел текучести. Т.е. такие напряжения, при которых материал возвращается к своим первоначальным размерам полностью и деформируется упруго после снятия нагрузки. А разрушающие напряжения для большинства металлов примерно в 1.5 раза больше предела текучести.

Максимальная эксплуатационная перегрузка Ny зависит от типа проектируемого летательного аппарата. Различают несколько групп самолетов, разделенных по величине максимальной эксплуатационной перегрузки:

1. Неманевренные самолеты. Это самолеты с максимальной Ny не более 2.5 ед.
Это все пассажирские и транспортные самолеты.

2. Ограниченно маневренные самолеты с максимальной экслуатационной Ny лежащей в интервале от 2.5 до 6 единиц. Сюда относятся фронтовые бомбардировщики, штурмовики, тяжелые перехватчики (Су-24, Су-25, МиГ-25, МиГ-31)

3. Маневренные самолеты. Самолеты с максимальной эксплуатационной перегрузкой от 6 до 9 единиц. Это - все современные истребители.

4. Спортивно-пилотажные самолеты. Этот те экстремальные самолеты, которые могут выходить на перегрузки до Ny=+12 единиц - Су-29, Су-31, Як-55, наверное зарубежные аналоги - всякие Extra 300.

Исходя из класса самолета определяется и природа возникновения максимальных эксплуатационных перегрузок. Для неманевренных самолетов выход на максимальные перегрузки связан с полетом в неспокойном воздухе, для остальных - максимальные перегрузки достигаются в следствии, естессна, криволинейного полета - маневрирования.

Масса самолета. Было бы просто сказать, что мол самолет должен без проблем выходить на максимальную перегрузку при максимальной взлетной массе. И на значительном числе самолетов такое условие выполняется. Правда порой такие жертвы ни к чему и дабы не перетяжелять конструкцию вводятся некоторые ограничения на максимальные массы и максимальные перегрузки.

Вернусь обратно к заглавному рисунку. Если на правой консоли я нарисовал распределение подъемной силы по размаху крыла, то на левой консоли я нарисова эпюру изгибающего момента. Наугад, примерно. Но общую картину она отражает. Следует также заметить, что крыло, помимо изгиба нагружается еще и крутящим моментом, так как линия действия резуьтирующей аэродинамической силы и линия жесткости крыла не совпадают.

Распределение подъемной силы по размаху и по хорде крыла зависит от режима полета самолета. В некоторых случаях максимальным будет изгибающий момент, в некоторых - крутящий, а могут быть и такие случаи, когда вроде и изгибающий момент не максимален, и крутящий тоже. Однако совместное их действие вызывает максимальные напряжения в элементах конструкции. Такие предельные режимы полета называются расчетными случаями (loadcase). Предствляют они собой крайние точки эксплуатационных ограничений самолета (flight envelope). Расчетных случаев - великое множество, к отдельным элементам конструкции и агрегатам могут применяться дополнительные комбинации нагрузок и для них количество расчетных случаев может исчисляться десятками, а то и сотнями.

В таблице ниже приведены несколько основных полетных случаев:

В шапке таблицы названия расчетных случаев - А, А-штрих, B, C, D и D-штрих, слева - параметры полета самолета:
Су - коэффициент подъемной силы крыла
ny - перегрузка
q - скоростной напор.
f - коэффициент безопасности принимаемый для данного расчетного случая.

Случай А - полет самолета при максимальной эксплуатационной перегрузке на углах атаки соответствующих максимальному коэффициенту подъемной силы (близких к критическому углу атаки для самолета). Скоростной напор при этом не будет максимальным, а будет зависить от описаного в таблице соотношения. Этот расчетный случай возможен при энергичном вводе самолета в вертикальный маневр, действие на самолет вертикального порыва воздуха.

Случай А-штрих - криволинейный полет самолета при предельном скоростном напоре и максимальной эксплуатационное перегрузке. Подъемная сила одинакова в двух этих случаях, она равна весу самолета умноженому на ny. Другое дело, что в расчетном случае А перегрузка реализуется за счет максимального угла атаки, путем быстрого выхода самолета на него и интенсивным торможением, а в случае А-штрих перегрузка реализуется на малых углах атаки при максимальном скоростном напоре. Реализация расчетного случая А-штрих возможна, например при выводе самолета из пикирования. Коэффициент безопасности равен тоже 1.5.

Основная разница - в распределении подъемной силы по размаху и хорде крыла. В случае А распределение будет таким, каким я его нарисовал на заглавной картинке - плавно увеличивающимся от законцовок к фюзеляжу. В случае А-штрих, который характеризуется меньшими углами атаки на диаграмме распределения подъемной силы будут наблюдаться провалы в местах крепления двигателей, внешних подвесок и фюзеляжа. Эти элементы не столь совершенны аэродинамически как профиль крыла, а потому вклад в формирование подъемной силы заметен только на больших углах атаки, коих не наблюдается в случае А-штрих.

Различным будет и распределение нагрузки по хорде крыла. Проще рисунок показать:

Расчетный случай В - полет при перегрузке, примерно в половину от максимальной эксплуатационной, но с отклоненными элеронами. На максимальном скоростном напоре. Это комбинация совместного действия на крыло изгибающего и крутящих моментов умереной величины. f=2

Расчетный случай С - полет на углах атаки соответсвущих нулевой подъемной силе с отклоенными элеронами. Случай характеризуется практически нулевыми изгибающими моментами и максимальным крутящим. Пример - восходящая или нисходящая вертикальная бочка. f=2

Помимо полетных случаев есть еще и различные варианты расчетных случаев при посадке - посадки на основные опоры, посадки на переднюю опору, посадки с боковой перегрузкой, посадки на воду, посадки с убраным шасси. Помимо всего прочего есть уж совсем специальные расчетные случаи. К примеру при расчете нервюр на передней кромке 787 есть такой сучай - заклинивание привода выпуска предкрылка. А привод предкрылка - это такой вал, который идет через переднюю кромку и выпускает секции предкрылка посредством зубчатой передачи. Так вот в этом расчетном случае предполагается, что этот вал заклинивает и весь крутящий момент дожен быть уравновешен узлами крепления двигателя, который и вращает вал. То есть болты должны выдержать перерезывающую силу, да и нервюра сама, будучи довольно ажурной не должна потечь или сломаться. Но это - уже дебри.

Вернемся к картинке, которая была выложена в предыдущем лекционном рассказе. С деформацией крыла 787. Я нашел более красивый вариант:

На этой картинке показана зависимость прогиба крыла в зависимости от величины нагружения.

Neutral - понятное дело, крыло не нагружено.

10 feet In Flight - это положение крыла при полете с перегрузкой Ny = 1G, то есть - равномерный прямолинейный полет.

Limit Load - Этого пункта на картинке нет. А зря. Limit (Maximal) load - это как раз прогиб крыла при действии максимальной эксплуационной перегрузки, Ny = 2.5G Предельная, максимальная нагрузка (перегрузка) - так ее правильно называть.

150% Max Load - это ни что иное как разрушающая нагрузка. Она - это предельная перегрузка умноженая на коэффициент безопасности - те самые 150%. Корректные названия - расчетная нагрузка, разрушающая. По нерусски - ultimate load.

Когда в репортажах или статьях про статиспытания нового самолета говорят, что самолет выдержа 150% расчетной нагрузки - это неверно. 150% максимальной нагрузки - это верно.

Таким образом сравнительно легко можно прикинуть разрушающую перегрузку для любого самолета - достаточно открыть РЛЭ, найти там максимально допустимую перегрузку и умножить ее на 1.5. Для неманевренных самолетов с Ny = 2.5G разрушающая перегрузка будет равна не менее чем 3.75G. Сознательно написал не менее, потому что идеально точно спроектировать самолет не получается, прочнисты всегда перестраховываются и чуть добавляют материала в запас.

В диапазоне от нулевой нагрузки до предельной дожно выполняться требование отсутствия необратимых пластических деформаций в планере самолета. (1G < Ny < 2.5G)

В диапазоне от предельной нагрузки до разрушающей гарантируется неразрушение самолета, но допускается наличие пластических деформаций.(2.5G < Ny < 3.75G)

В диапазоне от расчетной нагрузки и выше не гарантируется по результатам расчета практически ничего. Не, вру. Конструкция должна на статических испытаниях выдержать расчетную нагрузку в течении не менее трех секунд. (Ny >= 3.75G)

Вот известная уже картинка. На ней как раз планер 787 нагружен расчетной нагрузкой:

Часто, да почти всегда, коэффициент безопасности ошибочно называют запасом прочности. Это не так. О различии этих параметров - в следующий раз.

Понятие машины, узла, детали

Машина представляет собой устройство, предназначенное для облегчения или замены труда человека и повышения его производительности.

Машины подразделяют на:

1) машины – двигатели;

2) машины – орудия;

3) машины – транспортирующие;

4) машины – роботы;

5) машины – кибернетические.

Узлом называется законченная сборочная единица, составные части которой подлежат соединению между собой на предприятии сборочными операциями.

Деталь – изделие, полученное без применения сборочных операций (болт, гайка, вал и т.д.). Детали подразделяют на:

1) детали общего назначения (передачи, соединения и т.д.);

2) детали специального назначения (лопатка, поршень и т.д.).

Курс «Детали машин» посвящен расчёту деталей общего назначения.

Классификация деталей общего назначения:

1. Соединительные детали и соединения (необходимы для соединения отдельных деталей в один механизм);

2. Детали для передачи вращательного движения (оси, муфты, валы);

3. Детали для поддержания в пространстве вращающихся частей машины (опоры, корпуса).

Принципы расчёта деталей машин по основным критериям

Работоспособности

Задачей проектирования машин является разработка документации, необходимой для их изготовления, монтажа, установки и эксплуатации. При этом к машине предъявляются такие требования, как: прочность, износостойкость, жёсткость, виброустойчивость, теплостойкость, надёжность, технологичность. Эти требования называются критериями работоспособности .

Прочность – способность сопротивляться нагрузкам, не разрушаясь и не имея при этом больших пластических деформаций. Это один из главных критериев. Расчёты на прочность проводят по номинальным допускаемым напряжениям, по допускаемым коэффициентам безопасности и по вероятности безотказной работы.

Расчёт на прочность состоит:

1. Предварительный расчёт (определяются приближённые параметры);

2. Проверочный расчёт (определение прочности в опасных местах).

Условие прочности - ,

где - расчётное напряжение, - допускаемое напряжение.

Одним из наиболее общих требований является условие равнопрочности. Очевидно, что нет необходимости конструировать отдельные элементы с излишними запасами несущей способности, которые не могут быть реализованы в связи с выходом из строя других элементов.

Износостойкость. Износ – процесс постепенного уменьшения размеров детали в результате трения. Следствие износа – уменьшение прочности и увеличение динамических нагрузок, нарушение герметичности и т.д. Виды изнашивания: абразивный износ, износ при заедании, износ при коррозии и т. д.

Оценка сопротивлений по изнашиванию проводится по условию:

; ; , где P -давление; PV – мощность трения, -рабочая температура; - допускаемые значения.

В наиболее ответственных деталях машин износостойкость обеспечивается надлежащей смазкой, применением антифрикционных материалов и герметизацией областей трения.

Жёсткость – это способность детали сопротивляться изменению формы под действием сил.

Проверочный расчёт жесткости состоит в определении упругих деформаций:

Удлинения;

Прогиба;

Поворота при изгибе;

Закручивания.

Виброустойчивость. Вибрация вызывает дополнительные переменные напряжения и приводит к усталостному разрушению деталей. Особенно опасными являются резонансные колебания. Условие отсутствия резонанса - несовпадение частот возбуждающих нагрузок с собственными частотами. Это условие достигается конструктивными мероприятиями.

Теплостойкость. Любая работа вызывает тепловыделение. Это приводит к снижению несущей способности детали, снижению защитной способности масляного слоя, разделяющего трущиеся поверхности детали, изменению зазоров в соединениях, изменению свойств поверхностей, снижению точности машин. Температурный расчёт сводится к ограничению температуры .

Надёжность и долговечность деталей машин

Надёжность – свойство выполнять свои функции, сохраняя свои характеристики. Она определяется безотказностью, долговечностью, ремонтопригодностью и сохраняемостью.

Безотказность – свойства изделий сохранять работоспособность в течение заданной наработки без вынужденных перерывов.

Долговечность – свойства изделий длительно сохранять работоспособность.

Ремонтопригодность – способность изделия к обнаружению и устранению отказов.

Сохраняемость – свойства изделия сохранять эксплуатационные показатели при хранении и транспортировке.

Имеем N 0 изделий для испытаний в течение t часов. Пусть N от – количество изделий, отказавших при испытании,а N р – количество работающих изделий, тогда относительное число отказов

Если N 0 велико, то Q (t ) – вероятность отказов.

Количественная характеристика надёжности – вероятность безотказной работы P (t ):

Если машина состоит из большого числа узлов, соединенных последовательно (рис.1.2), а отказ одного приведёт к отказу машины, то по теореме умножений вероятностей вероятность безотказной работы есть произведение вероятностей безотказной работы отдельных элементов:

Пусть система состоит из параллельно соединённых деталей (рис.1.3). Вероятность безотказной работы такой системы можно записать в виде

Таким образом, надёжность сложной системы всегда меньше надёжности самого ненадёжного элемента. Чем больше элементов имеет система, тем меньше её надёжность.

Важной характеристикой является интенсивность отказов:

где t ср – средняя наработка на один отказ.

В период нормальной эксплуатации машины (область II рис.1.4) отказы от износа (область III) ещё не проявляются и надёжность характеризуется внезапными отказами. Они носят случайный характер и определяются выражением, уменьшаясь с наработкой по экспоненциальному закону (рис.1.5).

Основные пути повышения надёжности машин:

1. Улучшение конструкции изделия.

2. Повышение качества производства.

3. Обоснованное уменьшение напряжённости детали.

4. Правильный выбор системы смазки.

5. Резервирование:

а) постоянно параллельное (рис.1.6);

если

б) резервирование замещением.

Если надёжность переключения 100%, то

.

Резервирование применяется тогда, когда исчерпаны все другие средства, существенно повышает надежность системы, но усложняет её.

Лекция №2

Выбор допускаемых напряжений при статических и переменных нагрузках

Все основные расчёты делятся на проектировочные и проверочные. Например, для стержня (рис. 2.1)

Проектировочный расчет;

- проверочный расчет.

Допускаемые напряжения – это максимальные значения рабочих напряжений, которые могут быть допущены при условии обеспечения надёжности детали в процессе её работы:

где – предельное нормальное (касательное) напряжение детали, S – коэффициент безопасности.

Предельные напряжения – это такие напряжения, при действии которых деталь выходит из строя:

где k – коэффициент концентрации напряжения;

s limD – предельное напряжение лабораторного образца;

e m - масштабный фактор;

k П - коэффициент качества поверхности;

k р – коэффициент режима;

Коэффициент концентрации напряжения.

Фактические напряжения s max в зоне концентрации у дна выточки (рис. 2.2) будут значительно больше, чем где h и d - ширина и толщина пластины.

С увеличением абсолютных размеров сечений детали в большей степени проявляется негативное влияние неоднородности механических свойств металла и структурных дефектов, способствующих развитию усталостных трещин. Наряду с этим увеличение размеров сечения снижает градиент напряжений и положительный эффект возможного упрочняющего воздействия от обработки. Поэтому с увеличением абсолютных размеров сечения деталей происходит снижение их прочности и механических характеристик, получаемых при статических и усталостных испытаниях, учитываемое коэффициентами влияния абсолютных размеров – масштабными факторами

где s -1d (t -1d) – предел выносливости образца диаметра d ;

s -1 (t -1) – предел выносливости пробного образца d = 7…10 мм.

При статических нагрузках состояние рабочих поверхностей оказывает незначительное влияние на их прочность. При циклических нагрузках разрушение деталей связано с развитием усталостных трещин, возникающих обычно в поверхностном слое. Развитию усталостных трещин способствуют возникшие на поверхности в результате механической обработки микронеровности, являющиеся также концентраторами напряжений. Влияние их учитывается коэффициентами качества поверхности

где s -1 и t -1 – предел выносливости полированных образцов;

s -1d и t -1d – предел выносливости образцов с заданной обработкой.

Циклы нагружения

Детали машин обычно подвергаются действию напряжений, циклически меняющихся во времени. При этом возникают микроскопические трещины, приводящие к усталостной поломке деталей. В общем виде кривая, характеризующая изменение напряжений во времени, представлена на рис. 2.3.

Большое значение для работы детали имеют верхние и нижние пределы напряжений,

– среднее или условно постоянное напряжение,

– амплитудное напряжение.

Важным параметром является коэффициент асимметрии цикла .

В технике встречается три основных случая нагружения:

  1. Статическое нагружение (рис. 2.4).

Обозначение [ I ] – первый род нагрузки. R = +1.

Для хрупких материалов принимают

где и - пределы прочности при растяжении и сдвиге.

Для пластичных материалов принимают

где и - пределы текучести.

Для нормализованных и улучшенных сталей при s в >800 МПа принимают y s = 0,3…0,4 и y t = 0,4…0,5.

Определение коэффициента запаса прочности

Коэффициент запаса прочности (безопасности)

>1, где s р – расчётное напряжение.

Существует дифференциальный метод (Одинга) и табличный метод определения коэффициентов запаса прочности.

1. Дифференциальный метод определяет коэффициент запаса прочности как произведение частных коэффициентов, отражающих:

a) достоверность определения расчётных нагрузок S 1 = 1…1,5;

б) однородность механических свойств материалов S 2 =1,2…2;

в) специфические требования безопасности S 3 =1…1,5.

Общий коэффициент запаса прочности [S ]=S 1 · S 2 · S 3 .

2. Таблицы существуют для типовых деталей каждой отрасли.

Передачи

Основные понятия. Классификация механических передач

Любая машина состоит из трёх основных элементов – двигателя, передаточного механизма, исполнительного механизма.

Устройства для передачи энергии и движения от одного агрегата другому или от одной части машины к другой называются передачами . Передачи подразделяются на механические, электрические, пневматические, гидравлические и комбинированные. В курсе «Детали машин» изучаются только механические передачи. Введение передач обусловлено следующими причинами:

1. Требуемые скорости исполнительного механизма, как правило, не совпадают с оптимальными скоростями двигателя;

2. Скорость движения исполнительного механизма необходимо регулировать, что не всегда возможно сделать двигателем;

3. Двигатели обычно выполняются для равномерного вращательного движения, а исполнительные механизмы могут требовать иной вид движения.

Передачи по принципу работы разделяются:

а) передачи трением с непосредственным контактом тел (фрикционные) и с гибкой связью (ременные);

б) передачи зацеплением с непосредственным контактом (зубчатые и червячные) и с гибкой связью (цепные).

По характеру изменения скорости:

а) понижающие (редуктора) и повышающие (мультипликаторы);

б) регулируемые и нерегулируемые.

Регулируемые разделяются на:

а) со ступенчатым регулированием;

б) с бесступенчатым (плавным) регулированием.

По взаимному положению валов:

а) с параллельными осями;

б) с пересекающимися осями;

в) с перекрещивающимися осями.

Устройство, содержащее одну или несколько зубчатых или червячных передач, установленное в жёстком корпусе и предназначенное для понижения частоты вращения и увеличения крутящего момента, называется редуктором .