Все о тюнинге авто

Чем отличается подвижная радиотелефонная связь и сотовая. Информационные технологии в современном делопроизводстве. Взаимодействие эндокринных систем: прямая связь, обратная связь, синергизм, пермиссивное действие, антагонизм

В истории человечества одним из первых средств связи были сигнальные костры, в Древней Греции уже применялся простейший код - костровый дым трех цветов. С помощью цветовых сочетаний можно было передавать информацию. Во времена Ньютона появились подзорные трубы, что позволило создать систему костровой связи с ретрансляторами, находящимися на расстоянии, большем 10 км. Первым устройством оптической связи считается семафорный телеграф Шаппа, появившийся в 1791 г. К 1840 г., в период наивысшего расцвета семафорного телеграфа, общая протяженность его сети составляла примерно 5000 км, она охватывала всю Европу. Самая длинная линия такого «оптического» телеграфа протяженностью 1200 км была построена в 1839 г. между Петербургом и Варшавой. Начало развитию электросвязи было положено в 1837 г., когда американским художником и изобретателем С. Морзе был создан телеграфный аппарат. Телеграфные провода, подвешенные на столбах, простирались на многие километры. В 1876 г. американским инженером А.Г. Беллом был изобретен телефон. Опыты Герца открыли перед человечеством возможность применения радиоволн для осуществления связи. Наш урок посвящен радиотелефонной связи, мы рассмотрим вопросы, связанные с радиотелефонной связью, телевидением и радиолокацией

Для этой цели А.С. Попов использовал известную всем азбуку Морзе. Именно ему удалось осуществить радиосвязь, то есть передачу информации при помощи электромагнитных волн. Она заключалась в том, что при помощи точек и тире сообщалась некая информация.

Чем же отличается телефонная радиосвязь от радиосвязи?

Радиотелефонной связью мы называем передачу информации, речи, музыки на большие расстояния при помощи электромагнитных волн. Принцип радиотелефонной связи заключается в следующем: в передающей антенне создается высокочастотный переменный электрический ток, этот ток вокруг передающей антенны создает переменное электромагнитное поле, которое распространяется в виде электромагнитных волн. Такая волна, попадая на приемную антенну, возбуждает в приемной антенне ток той же частоты, что и был произведен при излучении, и таким образом осуществляется радиосвязь, то есть при помощи электромагнитных волн. Для того чтобы обеспечить такую связь, нужны специальные устройства. Во времена А.С. Попова и Генриха Герца, который впервые осуществил излучение электромагнитной волны и ее прием, источники электромагнитных колебаний были очень слабы, и поэтому на большие расстояния электромагнитная волна распространяться не могла. Тем не менее А.С. Попову удалось осуществить связь на расстоянии более 70 километров.

В наше время радиосвязь осуществляется по всему земному шару, даже за его пределами. Вопрос с производством высокочастотных колебаний был решен в 1913 году, когда был создан генератор незатухающих электромагнитных колебаний (рис. 2).

Рис. 2. Генератор незатухающих электромагнитных колебаний ()

Главной частью генератора является трехэлектродная лампа - триод, которая состоит из трех частей: анод, сетка и катод. Вот такая лампа является основной частью любого генератора незатухающих колебаний.

Рассмотрим схему устройства передатчика электромагнитных волн или передающего устройства (рис. 3):

Рис. 3. Передатчик электромагнитных волн ()

В первую очередь это генератор высокой частоты (ГВЧ), соединенный с модулятором (М), на который поступает звук от микрофона. В микрофоне механические колебания, звуковые колебания преобразуются в электрические колебания низкой частоты, и эти колебания от генератора высокой частоты и микрофона соединяются в модуляторе.

После усилителя (У) промодулированный сигнал поступает на передающую антенну, и уже этот сигнал выходит в эфир.

Слово «модуляция» означает «размеренность». Рассмотрим, как осуществляется модуляция в передающей части и из чего она состоит (рис. 4).

Рис. 4. Модуляция в передающей части ()

На первой части рисунка изображены высокочастотные колебания, по вертикали расположено напряжение (U 1), которое изменяется синусоидально и за очень маленький промежуток времени проходит очень много колебаний.

Вторая часть рисунка соответствует электрическим сигналам, которые поступают на модулятор от микрофона, это низкочастотные сигналы.

Когда в модуляции происходит объединение этих сигналов, мы наблюдаем высокочастотную составляющую, которая меняется по амплитуде в соответствии сигналам низких частот.

Этот процесс называется амплитудная модуляция .

Сегодня амплитудная модуляция - хорошо изученный и отработанный элемент, поэтому очень часто используется в радиосвязи, то есть когда мы слушаем радио, мы используем амплитудно-модулированный сигнал.

Существуют и другие способы модуляции: частотная модуляция или фазовая модуляция, они тоже нашли свое применение.

Сигнал, который мы создали, промодулировали, отправили в эфир, должен прийти к приемнику этого сигнала и, соответственно, получить звуковую частоту, которую можно было бы превратить в звук и послушать. Посмотрим, из каких же составляющих состоит приемная часть и какие преобразования происходят в этой части (рис. 5).

Рис. 5. Приемная часть ()

Приемная часть в первую очередь состоит из приемной антенны, далее детекторный приемник или детектор (Д). Сигнал, полученный антенной, поступает на детектор, где происходит процесс отделения высокочастотной составляющей от низкочастотной, в дальнейшем сигнал, соответствующий низкой частоте, усиливается в усилителе низкой частоты (УНЧ) и далее поступает на динамик, который воспроизводит звук.

Именно в детекторном радиоприемнике производятся отделения высокочастотной составляющей от низкочастотной, та самая высокая частота, которую мы получаем в генераторе, является несущей частотой. Именно на эту частоту должен быть настроен колебательный контур приемника.

Рассмотрим устройство детекторного радиоприемника (рис. 6):

Рис. 6. Детекторный радиоприемник ()

Основной частью любого радиоприемника является настроечный закрытый колебательный контур, состоящий из катушки индуктивности и конденсатора с переменной емкостью, изменяя емкость конденсатора, мы настраиваемся на нужную нам волну. Непосредственно к самому контуру присоединяется приемная антенна. Роль детектора выполняет полупроводниковый диод, сигнал поступает с большими помехами, и поэтому необходим фильтр (в данном случае это конденсатор) который не только убирает помехи, но и производит сглаживание пульсирующего тока. Далее сигнал поступает через сопротивление на динамик. Схема детекторного радиоприемника очень часто связана с вопросом: а где же берется энергия для работы приемника? Детекторный радиоприемник работает от энергии принятых электромагнитных волн, для него не нужно никакого дополнительного источника. Если антенна будет слишком короткой, то никакого сигнала мы не услышим, потому как энергия, полученная приемной антенной, будет невелика. Поэтому для устойчивой работы приемника антенна должна быть достаточно длинной. Сегодня разработаны различные системы антенн внутри самого приемника.

Обратимся к процессам, происходящим внутри приемника (рис. 7).

Рис. 7. Процессы, происходящие внутри приемника ()

На приемную антенну поступает промодулированный сигнал, который, пройдя настроечный контур, попадает на детектор, образуется пульсирующий ток, диод пропускает ток только в одном направлении, поэтому образуется лишь верхняя часть от сигнала, который приходит. Фильтр (конденсатор), каждые полпериода заряжаясь и разряжаясь, приводит к тому, что образуется сглаживание и появляется линия, которая соответствует низкочастотной составляющей. После электрического сопротивления в схеме детекторного радиоприемника мы получаем электрический сигнал, соответствующий низкочастотной составляющей. Именно этот сигнал поступает в динамик, и уже непосредственно динамик преобразует сигнал в механическую волну, которую мы называем звуком.

В вопросах телевидения ситуация похожая, только возникают дополнительные трудности - на модулятор необходим еще один сигнал, который несет информацию об изображении. Если это все соединить и послать в эфир, то телеприемник, принимая такой сигнал, должен разделить его на три части: звук, изображение и управляющий сигнал, ведь должна происходить синхронизация звука, изображения и само изображение должно быть совершенно четким.

Кроме телевидения и радиовещания, очень важное значение в нашей жизни имеет радиолокация. Радиолокация - это определение и обнаружение местоположения различных объектов при помощи радиоволн.

Радиолокация широко распространена в радиосвязи. Радиолокация осуществляется при помощи прибора - радиолокатора (радара) (рис. 8).


В радарах антенны передающая и приемная соединены вместе, радиолокатор - это комбинация приемника и передающего устройства. Работает радиолокатор в импульсном режиме (рис. 9).

Рис. 9. Принцип работы радиолокатора ()

Импульсный режим составляет одну миллионную секунды. Посылается сигнал - и радар автоматически переключается на прием этого сигнала, свойства работы радара основаны на том, что электромагнитная волна способна отражаться от поверхности. Вот этот отраженный сигнал радар и принимает в тот момент времени, когда он работает на прием. Расстояние до цели при помощи радара определяются по формуле, которую используют

при расчетах:

S = с · Δt / 2

В этой формуле представлено расстояние до цели (S), скорость электромагнитной волны (с) - величина постоянная и соответствует скорости в 300 000 км/с, время от момента подачи сигнала до момента приема сигнала, деленное пополам, так как сигнал идет до цели и обратно. Радиолокация используется не только на земле, но и в астрономии для обеспечения взаимосвязи между различными космическими телами и Землей. Определение расстояния до Луны было осуществлено с помощью радиолокатора. Был послан сигнал, получен отраженный сигнал, в результате чего уточнили расстояние от Земли до Луны.

Сегодня в астрономии радиолокация занимает свое особое место, радиоастрономия - это один из видов очень серьезных, быстроразвивающихся частей науки.

Мы рассмотрели принцип радиотелефонной связи, телевидения и радиолокацию. На следующем уроке обсудим свойства электромагнитных узлов.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика-9. - М.: Просвещение, 1990.

Домашнее задание

  1. Дать определение радиотелефонной связи.
  2. Каков принцип работы радиотелефонной связи?
  3. Каков принцип работы радиолокатора?
  1. Интернет-портал Ucheba-legko.ru ( ).
  2. Интернет-портал All-he.ru ().
  3. Интернет-портал Femto.com.ua ().

), в Р. с. осуществляется двусторонний обмен сообщениями между 2 корреспондентами - либо одновременно (дуплексная связь), либо поочерёдно (симплексная связь).

В простейших системах Р. с., осуществляющих как симплексную, так и дуплексную связь, радиостанция каждого из корреспондентов состоит из передатчика (мощностью 0,1-50 вт, с однополосной модуляцией (См. Однополосная модуляция) или частотной модуляцией (См. Частотная модуляция) колебаний) и чувствительного приёмника, работающих в диапазоне метровых или дециметровых волн; антенны; источника электропитания и микротелефонной трубки. Дальность связи составляет 0,5-30 км. Благодаря высокой оперативности, мобильности, малой массе и простоте обслуживания такие системы Р. с. нашли применение во многих областях народного хозяйства, прежде всего в низовой связи (см. Радиостанция низовой связи), в том числе диспетчерской связи (См. Диспетчерская связь), а также в военном деле. В редко заселённых районах Севера и Сибири для осуществления низовой связи на расстояниях до 300-500 км используют передатчики с однополосной модуляцией колебаний, работающие в декаметровом диапазоне волн и имеющие мощность 5, 30 или 300 вт.

В более сложных системах Р. с. (как правило, дуплексной связи) - радиорелейных (см. Радиорелейная связь), спутниковых (см. Космическая связь) и дальней связи на декаметровых волнах, - используемых для объединения телефонных сетей (См. Телефонная сеть) различных городов и районов СССР в рамках Единой автоматизированной системы связи (См. Единая автоматизированная система связи), применяют сложные направленные антенны и передатчики с однополосной модуляцией мощностью 5-100 квт. На линиях дальней Р. с. протяжённостью свыше 5-6 тыс. км примерно в середине трассы производят ретрансляцию сигналов посредством приёмо-передающей радиостанции (См. Приёмо-передающая радиостанция). В оконечных пунктах линии каждый её телефонный канал обычно сопрягается с телефонной линией (например, ведущей к местной АТС). В отличие от многоканальных радиорелейных и спутниковых систем связи, системы дальней Р. с. на декаметровых волнах малоканальны (1-4 телефонных канала); они обладают пониженными надёжностью и качеством передачи речи, но сравнительно дёшевы и очень оперативны. Эти системы применяют также для коммерческой связи с зарубежными странами, для связи с морскими судами и с теми населёнными пунктами СССР, для которых радиосвязь - единственный вид электросвязи (См. Электросвязь).

Лит.: Чистяков Н. И., Хлытчиев С. М., Малочинский О. М., Радиосвязь и вещание, М., 1968; Передача сообщений, пер. с нем., т. 2, М., 1973.

В. М. Розов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Радиотелефонная связь" в других словарях:

    Электросвязь, при которой посредством радиоволн передаются телефонные (речевые) сообщения. Информация поступает в линию радиотелефонной связи через Микрофон, а из нее обычно через телефон. Микрофон и телефон подключают к радиостанциям… … Большой Энциклопедический словарь

    радиотелефонная связь - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN wireless telephonic communication … Справочник технического переводчика

    Электросвязь, при которой посредством радиоволн передаются телефонные (речевые) сообщения. Информация поступает в линию радиотелефонной связи через микрофон, а из неё обычно через телефон. Микрофон и телефон подключают к радиостанциям… … Энциклопедический словарь

    Телефонная радиосвязь, телеф. связь посредством радиоволн между удалёнными подвижными и неподвижными сухопутными и мор. объектами, на м рых установлены приёмо передающие радиостанции. Р. с. применяется для связи между внутригор. движущимися… … Большой энциклопедический политехнический словарь

    И, предл. о связи, в связи и в связи, ж. 1. Взаимные отношения между кем, чем л. Связь между промышленностью и сельским хозяйством. Связь науки и производства. Торговые связи. Хозяйственная связь районов. Родственные связи. || Взаимная… … Малый академический словарь

    Передача на расстояние речевой информации, осуществляемая электрическими сигналами, распространяющимися по проводам, или радиосигналами; вид электросвязи. Телефонная связь обеспечивает ведение устных переговоров между абонентами, удалёнными друг… … Энциклопедический словарь - телефонная или радиотелефонная связь, используемая для переговоров диспетчера с исполнителями. * * * ДИСПЕТЧЕРСКАЯ СВЯЗЬ ДИСПЕТЧЕРСКАЯ СВЯЗЬ, телефонная, реже телеграфная или радиосвязь, используемая для переговоров диспетчера с исполнителями … Энциклопедический словарь

    - (англ. paging от page страница), радиотелефонная связь, пересылка по телефону продиктованных абонентом отправителем сообщений и прием их по радиоканалу абонентом получателем с помощью пейджера радиоприемника с жидкокристаллическим дисплеем, на… … Энциклопедический словарь

Когда применяется радиотелефонная связь при работе

При высоте строящегося здания более 36 м.

В каких местах категорически запрещается находиться стропальщику

  • 1. Под грузом
  • 2. Под стрелой
  • 3. Между поднимаемым грузом и стеной или штабелем
  • 4. В кузове автомашины при поднятии или опускании груза
  • 5. В зоне действия магнитных и грейферных кранов

Сроки проведения частичного и периодического освидетельствования, методы проведения

Частичное - не реже одного раза в год (производится осмотр всех узлов крана, металлоконструкций, приборов и устройств безопасности).

Полное - не реже одного раза в 3 года (статические и динамические испытания).

Статические испытания крана проводятся нагрузкой, на 25% превышающей его паспортную грузоподъемность. Мостовой кран устанавливается над опорами кранового пути, а его тележка - в положение, отвечающее наибольшему прогибу моста. Контрольный груз поднимается краном на высоту 100-200 мм и выдерживается в таком положении в течение

10 мин. По истечении 10 мин. груз опускается, после чего проверяется отсутствие остаточной деформации моста крана. При наличии остаточной деформации, явившейся следствием испытания крана грузом, кран не должен допускаться в работе до выяснения специализированной организацией причин деформации и определения возможности дальнейшей работы крана.

При статических испытаниях кранов стрелового типа стрела устанавливается относительно ходовой опорной части в положение, отвечающее наименьшей расчетной устойчивости крана, и груз поднимается на высоту 100-200 мм. Кран считается выдержавшим статические испытания, если в течение 10 мин. поднятый груз не опустится на землю, а также не будет обнаружено трещин, остаточных деформаций и других повреждений металлоконструкций и механизмов.

Динамические испытания проводятся грузом, масса которого на 10% превышает его паспортную грузоподъемность, и имеют целью проверку действия его механизмов и тормозов. При динамических испытаниях кранов (кроме кранов кабельного типа) производятся многократные (не менее трех раз) подъем и опускание груза, а также проверка действия всех других механизмов при совмещении рабочих движений, предусмотренных руководством по эксплуатации крана.

Техническое освидетельствование (ТО) крана должно проводиться ИТР по надзору за безопасной эксплуатацией ГПК при участии ИТР, ответственного за содержание ГПК в исправном состоянии. Результаты ТО записываются в паспорт крана ИТР по надзору за безопасной эксплуатацией ГПК, проводившим освидетельствованием, с указанием срока следующего освидетельствования.

В заявке на кран указывается:

  • - наименование объекта, организации
  • - время
  • - марка крана с указанием его грузоподъемности:

КС 4561 - кран стреловой

  • 4 - грузоподъемность (1 - 4 т, 2 - 6,3 т, 3 - 10 т, 4 - 16 т)
  • 5 - тип шасси (5 - автомобильное)
  • 6 - способ подвески стрелового оборудования (6 - с гибкой подвеской стрелового оборудования, 7 - с жесткой (гидравлика))
  • 1 - порядковый номер модели крана
  • - вид работ
  • - наличие БПРк с указанием Ф.И.О., номера удостоверения, датой последней проверки знаний
  • - наличие стропальщика с указанием Ф.И.О., номера удостоверения, датой последней проверки знаний
  • - наличие наряда-допуска, если работы производятся вблизи ЛЭП

Использование компьютерной телефонии намного ускоряет процесс управления на предприятии, повышая его эффективность и качество при общем снижении совокупных затрат. Современные компьютерные технологии позволяют значительно снизить затраты на междугородные, а тем более международные переговоры, без которых не обходится ни одно предприятие турбизнеса. Связь с партнерами осуществляется по компьютерным сетям, в частности по сети Интернет. Такая связь называется IP-телефония.

IP-телефония - это современная компьютерная технология передачи голосовых и факсимильных сообщений с использованием Интернета. Она позволяет осуществлять междугородную и международную голосовую связь, используя обычный телефонный аппарат или компьютер, подключенный к Интернету. Для туристских компаний, имеющих свою корпоративную сеть, IP-телефония позволяет значительно снизить издержки, связанные с телефонными переговорами.

Для использования IP-телефонии необходимо либо создание собственной сети IP –телефонии или использование сети IP-телефонии, разработанной другими операторами. Второй способ использования IP-телефонии предполагает возможность воспользоваться уже готовой сетью. Сейчас на рынке средств связи появились специальные фирмы-операторы, имеющие свою собственную сеть IP-телефонии. Стоимость минуты разговора в этом случае будет несколько больше, чем в первом случае, но фирме не придется нести большие первоначальные затраты на приобретение специального оборудования.

Радиотелефонная связь

Под радиотелефонной связью понимают беспроводные системы телефонной связи, которые не требуют проведения сложных инженерных работ по прокладке дорогостоящих телекоммуникаций и поддержке их в рабочем состоянии. Беспроводная система телефонной связи, по сравнению с обычной, проводной, обладает следующими достоинствами:

    меньшие капитальные затраты на ее создание;

    возможность создания независимо от рельефа местности, природных условий и наличия соответствующей инфраструктуры;

    меньший срок окупаемости системы;

    меньшая трудоемкость работ по организации системы и на порядок более быстрыми темпами ввода в эксплуатацию;

    обеспечение надежной и оперативной связи с мобильными пользователями;

    более широкие возможности по управлению системой и по защите информации.

Среди радиотелефонных систем можно выделить такие их разновидности, как: системы сотовой радиотелефонной связи; системы транкинговой радиотелефонной связи; телефоны с радиотрубкой; телефонные радиоудлинители; системы персональной спутниковой радиосвязи.

Системы сотовой радиотелефонной связи

Появление сотовой связи было связано с необходимостью создания широкой сети подвижной радиотелефонной связи в условиях достаточно жесткого ограничения на доступные полосы частот. Впервые идея сотовой связи была предложена в декабре 1971 г. компанией Bell System в США. Годом начала практического применения сотовой связи считается 1978. В России сотовая связь начала внедряться с 1990 г., а с 1991 г. началось ее коммерческое использование. Система сотовой связи представляет собой совокупность ячеек, покрывающих обслуживаемую территорию. Обычно ячейки схематично изображают в виде правильных шестиугольников, которые похожи на пчелиные соты, что и послужило поводом назвать данную систему сотовой. Каждая сота обслуживается своим радиооборудованием. Причем число абонентов, обслуживаемых данной сотой, не является постоянной величиной, поскольку абоненты могут перемещаться из одной соты в другую. При пересечении границы соты абонент автоматически переходит на обслуживание в другую соту, т.е. подключается к ближайшему ретранслятору. В центре каждой ячейки находится базовая станция, которая обслуживает всех абонентов, находящихся в данной ячейке. Все базовые станции системы соединяются с центром коммутации, который, в свою очередь, имеет выход во Взаимосвязанную сеть связи (ВСС) России. Поскольку существует множество различных стандартов и операторов, одной из проблем в сотовой радиотелефонной связи является возможность перемещения от сети одного оператора к сети другого оператора со своим радиотелефоном, т. е. пользование сотовой связью за пределами одной «домашней» системы. Такое перемещение называется роуминг (от английского слова roam - бродить, странствовать).

Роуминг - это функция или процедура предоставления услуг сотовой связи абоненту одного оператора в системе другого оператора. Такого абонента, который пользуется услугами роуминга, называют ромером (roamer). Для осуществления роуминга необходимо соглашение между соответствующими операторами и наличие необходимого технического обеспечения (простейший случай - использование в обеих системах сотовой связи одного и того же стандарта). Существует автоматический и не автоматический (ручной, административный) роуминг.

Транкинговые радиотелефонные системы

Транкинговая связь - наиболее оперативный вид двухсторонней мобильной связи. Она является наиболее эффективной для координации мобильных групп абонентов. Транкинговые системы связи, как правило, используются корпоративными организациями или группой пользователей, объединившихся по организационному признаку или просто «по интересам». Передача информации (трафик) осуществляется, как правило, только внутри транкинговой системы, и выход абонентов во внешние телефонные сети хотя и предусмотрен, но используется в исключительных случаях. Транковые радиотелефоны могут осуществлять связь как через базовую станцию, находясь в зоне ее действия, так и непосредственно напрямую связываться друг с другом, находясь как в зоне действия базовой станции, так и вне зоны. Этим определяются основное достоинство и принципиальное отличие транкинговой системы от сотовой системы связи. Телефоны с радиотрубкой отличаются от обычных телефонных аппаратов только тем, что связь между трубкой и базой осуществляется не по проводу, а по радиолинии. Для этого и в трубке, и в телефонном аппарате установлены маломощные приемо-передающие радиоустройства. Такое техническое решение значительно повышает комфортность использования телефона, как на работе, так и в домашних условиях. Дальность действия зависит как от модели телефона, так и от окружения, в котором им пользуются. Она может быть от нескольких метров до нескольких километров. Радиоудлинители используются в фирмах для связи с удаленными мобильными сотрудниками. У радиоудлинителей много общего с радиотрубками, но они обладают большей мощностью и могут обеспечивать большую дальность связи (до 30 км и более). В общем виде система радиоудлинителя представляет собой одно-канальную радиосистему, состоящую из базового блока и телефонной трубки с телескопической антенной и номеронабирателем.

Персональная спутниковая радиосвязь

Персональная спутниковая радиосвязь основана на применении системы спутниковой телекоммуникации - комплексов космических ретрансляторов и абонентских радиотерминалов. Данная технология позволяет обеспечить персональную радиосвязь с абонентом, находящимся в любой точке планеты. Видеотерминал с приемо-передающей аппаратурой через спутник-ретранслятор, находящийся на стационарной орбите, связывается с радиотерминалами абонентов.

Пейджинговые системы связи

Пейджинговые системы связи являются одной из разновидностей персональной радиосвязи. Основным недостатком данной системы является то, что она позволяет осуществлять только одностороннюю связь, что значительно снижает надежность данной связи и отрицательно влияет на ее оперативность. Но поскольку стоимость данной связи является невысокой, то в настоящее время она очень распространена и широко используется для передачи информации.

Пейджинговая система состоит из терминала, на который поступает вся входящая информация и миниатюрного УКВ приемника (пейджера), который находится у абонента. Каждый абонент имеет свой персональный телефонный номер. Для передачи информации абоненту необходимо связаться с ним через терминал либо по телефону, либо при помощи компьютера и передать сообщение для абонента соответствующего номера. Например, пейджинговая система связи может быть организована внутри одной крупной корпорации. Такая система называется корпоративной. Корпоративные пейджинговые системы могут использоваться, например, в большой гостинице или аэропорту и предназначены для организации экстренной связи сотрудников данной фирмы независимо от того, где они находятся. Это значительно повышает эффективность работы данного предприятия.

Видеосвязь

Видеосвязь является одной из самых прогрессивных и перспективных связей, которая в настоящий момент начинает проникать и на российский рынок связи. Основным достоинством видеосвязи считается возможность видеть своего собеседника на экране. В процессе обсуждения различных вопросов по видеосвязи можно использовать изображение необходимых рисунков и схем, демонстрировать различные изделия. При этом можно видеть реакцию собеседника, его глаза, что при ведении деловых бесед весьма актуально.

Видеосвязь является синонимом термина видеоконференция или мультимедиасвязь. Видеоконференция не просто видеотелефон на персональном компьютере, а компьютерная технология, которая позволяет людям видеть и слышать друг друга, обмениваться данными и совместно их обрабатывать в интерактивном режиме. Для этого необходимо выполнение двух условий:

    в компьютере обязательно устанавливается плата видеоконфе-ренцсвязи с соответствующим программным обеспечением;

    должна быть возможность соединиться с абонентом либо через компьютерные сети, либо по каналам цифровой телефонной связи.

Мультимедиасвязь может найти применение в любых секторах российской экономики, например в туристском бизнесе. Увидеть реальную живую картинку предпочтительнее, чем смонтированный видеоролик. Уже сейчас во многих известных курортных и туристических местах установлены автоматические камеры, входящие в состав мультимедийных систем.

Основные проблемы передачи аудио- и видеоинформации состоят в следующем. Канал связи, по которому передается информация, должен быть достаточно скоростным, т. е. обладать высокой пропускной способностью. Вторая проблема - это проблема скорости обработки аудио- и видеопотока, т. е. кодирования передаваемых и декодирования получаемых данных.

Для проведения видеоконференций требуется специальное оборудование, включающее видеокамеру, средства поддержки звуковой и видеоинформации, кодер-декодер для сжатия и декомпрессии звуковых и видеосигналов, микрофон, быстродействующий модем и выход в сеть.

Факс - это устройство факсимильной передачи изображения по телефонной сети. Название факс произошло от слова «факсимиле», означающее точное воспроизведение графического оригинала средствами печати. Модем, который может передавать и получать данные, как факс, называется факс-модемом. Для обеспечения факсимильной передачи необходим факсовый аппарат или компьютер, снабженный факс-модемом.

В процессе факсимильной передачи в точке возникновения (источнике информации) осуществляются ее считывание, кодирование и отправка, а на принимающем устройстве - прием, декодирование (расшифровка) и вывод информации. Считывание информации происходит полинейно. При этом обеспечивается достаточно качественная пересылка машинописного текста или черно-белого изображения невысокой четкости.

Модуль 5. ИНФОРМАЦИОННЫЕ СИСТЕМЫ МЕНЕДЖМЕНТА

Структура модуля:

5.1. Пакеты управления туристскими фирмами

5.2. Программа TurWin

5.3. Программа Tour Pilot

5.4. Программа «Само-Тур»

5.5. Программный комплекс «Мастер-Тур»

С точки зрения управления сфера туризма представляет собой сложную систему, в которой передаются и обрабатываются большие потоки информации. Обеспечение качественного уровня управления можно обеспечить только при использовании современных информационных технологий управления. Поэтому на предприятиях сферы социально-культурного сервиса и туризма широкое применение находят специализированные информационные системы, обеспечивающие сбор, передачу, обработку актуальной информации, необходимой для принятия управленческих решений.