Все о тюнинге авто

Презентация на тему гидравлические машины в мчс. Гидравлические машины. Экспериментальная характеристика центробежного насоса


Цели и задачи урока: Знать: - физические основы устройства и работы гидравлической машины; - понятие гидравлической машины; - практическое применение гидравлического пресса; Уметь: - применять полученные знания при проведении эксперимента; - владеть приемами письменной и устой речи;


Механизмы, работающие при помощи какой-нибудь жидкости, называются гидравлическими (греч. "гидор" - вода, жидкость).


S 1). По закону Паскаля имеем равенство давлений в обоих цилиндрах: p 1 =p 2" title="Устройство гидравлического пресса Два сообщающихся сосуда наполнены однородной жидкостью и закрыты двумя поршнями, площади которых S 1 и S 2 (S 2 > S 1). По закону Паскаля имеем равенство давлений в обоих цилиндрах: p 1 =p 2" class="link_thumb"> 4 Устройство гидравлического пресса Два сообщающихся сосуда наполнены однородной жидкостью и закрыты двумя поршнями, площади которых S 1 и S 2 (S 2 > S 1). По закону Паскаля имеем равенство давлений в обоих цилиндрах: p 1 =p 2 S 1). По закону Паскаля имеем равенство давлений в обоих цилиндрах: p 1 =p 2"> S 1). По закону Паскаля имеем равенство давлений в обоих цилиндрах: p 1 =p 2"> S 1). По закону Паскаля имеем равенство давлений в обоих цилиндрах: p 1 =p 2" title="Устройство гидравлического пресса Два сообщающихся сосуда наполнены однородной жидкостью и закрыты двумя поршнями, площади которых S 1 и S 2 (S 2 > S 1). По закону Паскаля имеем равенство давлений в обоих цилиндрах: p 1 =p 2"> title="Устройство гидравлического пресса Два сообщающихся сосуда наполнены однородной жидкостью и закрыты двумя поршнями, площади которых S 1 и S 2 (S 2 > S 1). По закону Паскаля имеем равенство давлений в обоих цилиндрах: p 1 =p 2">










Тест На большой поршень действует сила Н, а на малый – 300 Н. Какой выигрыш в силе дает гидравлическая машина





Цель: Изучить физические основы работы и устройства гидравлических машин.

Задачи:

Образовательная:

  • Применить имеющиеся знания к объяснению принципа действия технических устройств.
  • Создать условия для понимания особых свойств работы гидравлического домкрата и пресса.

Развивающая:

  • Создать условия для активизации познавательной деятельности.
  • Развивать способности учащихся грамотно выражать свои мысли.

Воспитательная:

  • Развивать познавательный интерес к предмету, показать значение физики для развития техники.
  • Развивать навыки коммуникативного общения

Ход урока

Проверка домашнего задания

На предыдущих уроках мы с вами изучили давление твёрдых тел, методы его расчёта, способы и необходимость на практике увеличивать или уменьшать это давление. Не менее важно было знать, как измеряется гидростатическое давление. Подводные лодки, аквалангисты, водолазы и т.д. постоянно испытывают это колоссальное давление. И, наконец, давление газов и, прежде всего, нашей атмосферы. Ведь мы с вами живём на дне воздушного океана и жизненно важно вести мониторинг атмосферного давления. На предыдущем уроке, мы с вами научились измерять давление, как большее атмосферного, так и давление меньшее атмосферного, что одинаково важно в технике. Вот и покажем свои знания по всем этим уже изученным вопросам.

Тема нашего сегодняшнего урока гидравлические машины.

(Слайд 1).

Переведите единицы измерения мм.рт.ст. в Па. (Слайд 3)

Для понимания многих явлений требуется знание одного из важнейших законов природы - закона Паскаля.

Кто знает формулировку закона Паскаля, поднимите руку.

Мы с вами повторили:

1) Как передаётся давление в жидкости.

Все эти 3 задачи являются главными в работе одной из самых "сильных" машин, которая легко штампует кузова, крылья, двери не только легковых, но и грузовых автомобилей, делает многие и многие тяжёлые работы в сельском хозяйстве, промышленности и даже у папы в гараже.

Кто догадался, как же называются эти машины?

Гидравлические машины.

Сначала посмотрим, как они выглядит на модели. (Приложение 3) (Приложение 2)

Кто сможет описать его устройство?

Гидравлический пресс состоит из двух цилиндров и свободно перемещающихся поршней разной площади сечения, соединённых трубкой заполненной минеральным маслом. В тетради ученики делают принципиальную схему гидравлической машины, повторяя правило (алгоритм) описания устройства пресса. Презентация 1 (Слайд 7)

Пусть F 1 - сила, действующая на малый поршень с площадью S 1 . Тогда давление, которое малый поршень производит на жидкость равно:

Это давление по закону Паскаля передаётся по всем направлениям одинаково. Следовательно, и на больший поршень производится точно такое же давление p 2 = p 1 . Теперь можно посчитать, какая сила давления действует на больший поршень: F 2 = p 2 S 2.

Проведём простейший расчёт силы давления, которую развивает больший поршень. Из него будет следовать полное понимание того, зачем построена эта сильная машина. (Числа подбираются эффектные и простые с тем, чтобы учащиеся легко справились с расчётом выигрыша в силе почти устно. Иначе за тяжёлыми расчётами они не смогут разглядеть суть дела).

Отношение F 2 /F 1 = S 2 /S 1 называется выигрышем в силе.

Современные гидравлические прессы дают возможность получить выигрыш в силе в несколько тысяч раз.

Посмотрим, с какой силой нужно действовать, чтобы поднять, машину, мотоцикл находим массу, с помощью которой уравновесятся различные тела. Приложение 4

Какой вывод можно отсюда сделать? Презентация 1 (слайд 9)

Где применяются такие устройства? (слайд 11,12)

Итак, мы познакомились с принципом действия, устройством и применением гидравлического пресса. Теперь проверим себя, чему научились на этом уроке. (Приложение 5 )

Подводя итоги урока , дети делают выводы, что гидравлические механизмы необходимы в жизни человека.

Они позволяют добиваться выигрыша в силе. Приложение 1

Выставление оце нок и объявление домашнего задания.

Литература.

  1. Перышкин А.В. Физика 7 класс - М.: "Дрофа", 2009.
  2. Волков В.А., Полянский С.Е. Поурочные разработки по физики 7 класс - М.:"ВАКО" 2009.
  3. Перышкин А.В. Сборник задач по физике 7-9 класс -М.: издательство "Экзамен" 2006.

Ход урока.

I. Организационный момент.

Цель: сообщить тему урока, сформулировать цели урока, настроить учащихся на работу.

  1. Опорное повторение.

Вопросы:

  1. Слайды 1,2 . Устные ответы на вопросы, приведенные на слайдах.
  1. Мотивация и сообщение темы урока.

Слово учителя: Человек, поселяясь там, где нет источников воды, вынужден организовать ее доставку к месту жилища, ее очистку. Вода нужна человеку не только для питья, но и для полива сельскохозяйственных угодий, гигиенических процедур, тушения пожаров и т.д. Ясно, что даже в городе на берегу реки необходимо иметь устройства, позволяющие поднимать воду наверх. Первыми такими устройствами был простейшие подъемники. Именно с их помощью, в основном, и доставали воду из колодцев и водоемов до XVIII века.

Однако еще в 1 в. н. э. древнегреческим учёным Героном из Александрии описана пожарная помпа, изобретенная древнегреческим механиком Ктесибием (Слайд3) Такая помпа использует два поршня и четыре клапана, с помощью которых вода постепенно заполняет центральный цилиндр помпы под давлением. Когда уровень воды в центральном цилиндре достигает отверстия, то вода по трубке, надеваемой на патрубок, отходящий от отверстия, вырывается наружу и направляется на очаг огня. Такая помпа использовалась пожарными вплоть до середины XX века.

(Слайд 4) Ручные поршневые насосы, в которых поршень создает разрежение, а атмосферное давление подает под него воду, в настоящее время еще сохранились на садовых участках. В них только один поршень и два клапана. В остальном их принцип действия такой же, как в древней пожарной помпе. Рассказ об устройстве диафрагменного насоса по слайду. Своего расцвета поршневые насосы достигли в XIX веке, когда стали использовать стальные поршни, приводимые в движение паровыми машинами

4). Развитие в XX веке электроэнергетики, появление разнообразных двигателей, от дизельных до электрических, необходимость добывать нефть из глубоких скважин - все это способствовало изобретению новых типов насосов, позволяющих использовать вращение вала двигателя.

Широкое распространение получили, например, шестеренчатые, центробежные, диафрагменные насосы. Они позволяют поднимать жидкости на высоту больше, чем 10 м. Например, в США для насосной станции Гранд-Кули был создан вертикальный одноступенчатый центробежный насос, способный подавать 138 000 м 3 /ч на высоту 95 м. Отличительная черта всех этих насосов - ускорение поступающей жидкости до большой скорости.

Рассказ об устройстве диафрагменного насоса по слайду (Слайд 5)

  1. Стадия осмысления.

Цель: объяснить принцип работы гидравлических машин .

Другие замечательные машины, принцип действия которых основан на законе Паскаля -позволяют, прилагая малые усилия, добиваться воздействия огромных сил на нужные объекты.

Устройство их просто: два сообщающихся сосуда с разными площадями оснований, в которых сжатая жидкость передает усилие одного поршня другому.

1. Если на поршень с площадью S 1 надавить с силой F 1 , то давление под поршнем (слайд 6) будет равно

На том же уровне в правом сосуде давление тоже будет равно p 1 ,. Однако если площадь правого поршня будет равна S 2 , то сила действия жидкости на правый поршень будет равна

Таким образом, если правый поршень по площади в 10 раз больше левого поршня, то, воздействуя с силой 1 Н на левый поршень, мы сможем создать усилие на правый поршень в 10 раз больше

2. Сколько жидкости убудет из левой половины сосуда, столько же ее прибудет в правую половину. Поэтому если мы сдвинем левый поршень на 10 см, правый поднимется лишь на 1 см Чтобы поднимать тела, используют систему клапанов и повторяют процедуру опускания и подъема левого поршня несколько раз. Та кработает гидравлический домкрат

Попробуйте по слайду сами рассказать, как работает гидравлический домкрат.

3. Если над поршнем справа поставить неподвижную перекладину, то груз упрется в нее, и мы будем сдавливать его с большим усилием. Такое устройство называется гидравлическим прессом.

В серьезных технических устройствах нагнетание масла происходит не вручную, а с помощью специального двигателя.

  1. Стадия рефлексии.

Цель: применение полученных знаний при решении задач и при ответах на вопросы.

Необходимо сформулировать ответы на вопросы, приведенные на слайдах 6, 7 .

  1. Подведение итогов, выставление оценок.

К ручному немеханизированному инструменту относятся: пожарные багры, ломы , крюки, топоры, столярные ножовки, ножницы для резки электропроводов. По желанию заказчика в комплект может включаться и другой инструмент, например, гидравлические ножницы для резки арматуры.

С приводом от электродвигателя, двигателя внутреннего сгорания, сжатого воздуха, гидроагрегата; эластомерные пневмодомкраты, пневмозаглушки и пневмопластыри.

Классификация инструментов

По виду привода :

  • ручной немеханизированный пожарный инструмент: топор, багор, лом, крюк, а также комплект универсального инструмента и устройство для резки воздушных линий электропередач и внутренней электропроводки;
  • ручной механизированный пожарный инструмент с электроприводом, мотоприводом, пневмоприводом, гидроприводом.

По функциональному назначению:

Размещение инструмента и оборудования на пожарных автомобилях

Размещение ПО должно удовлетворять ряду требований: способствовать уменьшению ПА, не снижать его оперативной подвижности, его крепление и размещение должны быть травмобезопасными.

Для реализации изложенных требований размещение ПО в отсеках ПА должно подчиняться принципу эргономики, согласно которому оборудование, органы управления и приборы должны располагаться в соответствии с логикой деятельности человека.

При размещении ПО в отсеках АЦ следует учитывать возможности:

Ручной немеханизированный инструмент: ломы, багры, крюки, топоры, пилы, лопаты, ножницы для резки металлических решеток, комплект для резки электропроводов (ножницы, резиновый коврик, боты, резиновые перчатки, переносное заземление), комплект инструмента пожарного ручного немеханизированного УКИ-12, инструмент ручной аварийно-спасательный ИРАС.

К ручному немеханизированному пожарному инструменту относятся: пожарные ломы, багры, топоры, крюки, лопаты, пилы и комплект инструмента для резки электропроводов.

Пожарные багры предназначены для разборки кровель, стен, перегородок, стропил и других частей конструкций зданий и растаскивания горючих материалов. На пожарах используют багры двух типов.

Багор пожарный металлический (БПМ) состоит из крюка, копья, металлического стержня и рукоятки. Стержень изготовлен из трубы диаметром 20 мм. Крюк и копье изготовлены из стали Ст45 и подвергаются термической обработке. Крюк и метал-лическое кольцо приварены к стержню. Этими баграми укомплектовываются пожарные автомобили. РИС.

Пожарные ломы предназначены для вскрытия строительных конструкций и входят в комплект пожарных автомобилей.

(ЛПТ) предназначен для тяжелых рычажных работ по вскрытию конструкций, имеющих плотные соединения (полов, дощатые фермы, перегородки), а также для вскрытия дверей.

Лом представляет собой металлический стержень диаметром 28 мм. Его верхняя часть изогнута и образует четырехгранный крюк, а на нижней части имеется заточка на два канта.

Пожарный лом ПШ с шаровой головкой предназначен для обивки штукатурки, скалывания льда с крышек колодцев гидрантов.

Лом представляет собой круглый стержень, на верхнем конце которого имеется шар. Диаметр его 50 мм, плоский срез имеет диаметр 25 мм. На нижнем конце лома имеется заточка на два канта с шириной лезвия 12,5 мм.

Лом пожарный легкий (ЛПЛ) применяют для расчистки мест пожара, вскрытия кровель, обшивки и других подобных работах.

Он представляет собой металлический стержень диаметром 25 мм, верхний конец которого отогнут под углом 450 и заострен на четыре грани так, что образуется плоское лезвие шириной 10 мм. Длина заточки 80. Нижний конец лома также четырехгранный. На расстоянии 200 мм от верхнего конца имеется кольцо диаметром 30 мм для подвески его.

Лом пожарный универсальный (ЛПУ) используется для открывания окон и дверей. Он представляет собой металлический стержень с двумя отогнутыми частями.

Ломы изготавливаются из стали Ст45, заостренные их части подвергаются термической обработке.

В пожарной охране используются крюк для открывания крышек колодцев-гидрантов и легкий пожарный крюк. Пожарные крюки входят в комплект пожарных автомобилей.

Легкий пожарный крюк (ЛПК) предназначен для вскрытия конструкций внутри зданий и удаления их с места пожара. Крюк изготовлен из полосовой стали Ст45Н, сечением 25х12 мм. Длина крюка 395 мм, ширина 225 мм. Верхний конец крюка имеет заточку на два конца, с нижней заканчивается ушком для навязывания веревки толщиной 14…17 мм и длиной 1300 мм. Веревка заканчивается петлей длиной 500 мм. Масса крюка 1,5 кг.

Топор пожарный поясной имеет лезвие и кирку. Его лезвие пред-назначено для разборки деревянных конструкций. Кирка используется для проделывания отверстий в кирпичных и бетонных конструкциях, пере-движения пожарных по скатам крыш.

Полотно топора изготавливается из высокоуглеродистой стали У7, а его лезвие подвергается термической обработке. Топор насаживается на деревянное топорище и закрепляется к нему металлическими накладками. Топорище изготавливают из твердых сортов древесины (береза, клен, ясень, граб, бук). Топорище не окрашивается, т.к. краска может покрывать поверхностные трещины. Длина топора составляет 350…380 мм, а его масса должны бать не более 1 кг.

Лопата пожарная . Лопата является одним из видов пожарного инвентаря. Используется для тушения небольших низовых пожаров и подачи огнетушащих веществ к очагу воспламенения.

Существует два вида пожарных лопат:

Лопата штыковая используется для локализации или тушения небольших возгораний.

Масса: не более 2 кг

Габаритные размеры: 1500х230х170 мм

Лопата совковая предназначена для подачи песка в очаг возгорания.

Масса: не более 2 кг

Предназначен для вскрытия и разборки строительных конструкций при тушении пожаров. В комплект входит: две универсальные штанги с выдвижными рукоятками и набор сменных рабочих органов. Штанга универсальная имеет фиксирующие устройства для крепления рукоятки в двух положениях и установки одного из рабочих органов.

Техническая характеристика УКИ-12М:

  • Максимальный изгибающий момент, Нм – 785 ;
  • Максимальное растягивающее усилие, Н – 1960;
  • Продолжительность замены рабочих органов, с – 10;
  • Время вырезания отверстия диаметром 500 мм в листе кровельного железа толщиной до 0,8 мм, с – 180;
  • Масса штанги универсальной с рукояткой-крюком, кг – 5,3;
  • Масса комплекта в контейнере, кг – 28,0;
  • Габаритные размеры контейнера с инструментом, мм – 1000х295х270;
  • Срок службы, лет – 11.

Техническая характеристика ИРАС:

  • Максимальный изгибающий момент на рукоятку головки – 220 Нм.
  • Максимальный изгибающий момент на штангу вскрывателя – 160 Нм.
  • Масса полная – 5,0 кг.
  • Масса многоцелевой головки – 3,15 кг.
  • Масса вскрывателя – 1,82 кг.
  • Длина инструмента при выдвинутом вскрывателе – 825 мм.
  • Габаритные размер – 570х67х200 мм.
  • Срок службы – 6 лет.

Ручной механизированный инструмент, классификация по типу привода

Виды ручного механизированного инструмента в зависимости от привода:

  • от двигателя внутреннего сгорания (бензомоторный);
  • от электродвигателя (электрический);
  • от сжатого воздуха (пневматический)
  • от гидроагрегата или ручного насоса (гидравлический).
  • Переносной дымосос ДПЭ-7 с электроприводом
  • Электропила цепная консольного типа
  • Пневмодомкраты эластомерные;
  • Пневмопластыри эластомерные;
  • Отбойные пневматические молотки (бетоноломы)

:

  • Ножницы (кусачки) гидравлические;
  • Разжимы гидравлические;
  • Инструмент комбинированный гидравлический;
  • Домкраты гидравлические;
  • Устройства для вскрытия металлических дверей;
  • Устройства приводные гидравлические (ручные насосы и насосные агрегаты);
  • Гайковёрты гидравлические;
  • Пережиматели труб гидравлические.

и «Медведь». Виды, назначение, устройство и краткая техническая характеристика, область и порядок применения.

Гидравлический аварийно-спасательный инструмент (ГАСИ) «СПРУТ» – это:

  • высокие силовые характеристики при малых массе и габаритах;
  • простота и удобство в эксплуатации и обслуживании;
  • многофункциональность;
  • высокая эксплуатационная надежность, возможность использования в разных климатических условиях и др.

Рис.1. Кусачки КГC – 80Х

Предназначены для резания листового металла, труб, профилей, перекусывания арматуры.

Рис.2. Ножницы комбинированные КНКГС – 80

Применяются для резания металла, труб, перекусывания арматуры из стали, а также для раздвигания, поднимания и удержания грузов в фиксированном положении

Рис.3. Расширитель большой КРБГС – 80

Применяется для перемещения различных объектов, проделывания проходов в завалах, расширения щелей в стыке трудно раздвигаемых объектов. Для удержания грузов в фиксированном положении, деформирования и стягивания

Рис.4. Домкрат клиновой гидравлический ДКГ – 80

Применяется для отжатия стальных дверей, фланцев трубопроводов, расширения щелей, где отсутствие зазоров не дает возможности применения других инструментов.

Рис.7. Удлинитель барабанный ККУС – 1/15

Применяется в комплекте с гидростанцией для увеличения зоны работ гидроинструмента

Насос ручной РН 2080М предназначен для подачи рабочей жидкости в гидравлический инструмент. Приводится в действие рукой оператора. Может быть использован во взрывопожароопасных помещениях, шахтах. Оснащается рукавами высокого давления длиной 3 или 6 метров.

Рабочее давление 80,0 МПа
Тип насоса двух- ступенчатый
Полезный объем рабочей жидкости 2000 см3
Масса готового к работе насоса 11,9 кг
Рабочий объем на каждый такт, не менее:
- первая ступень 20,4 см3
- вторая ступень 2,25 см3
Габаритные размеры:
- длина 740 мм
- ширина 220 мм
- высота 176 мм

Катушка-удлинитель КУ2080-1/10М предназначена для подачи рабочей жидкости от насосной станции или ручного насоса в гидравлический инструмент, транспортировки и хранения рукавов. Является составной частью аварийно-спасательного переносного инструмента с гидроприводом.

Ножницы комбинированные НК2080М предназначены для расширения узких проемов, подъема, перемещения и удержания в неподвижном состоянии объектов, перекусывания и резки стальных прутков, уголков и других профилей, сжатия труб. Возможно применение совместно с набором принадлежностей НП 2080М. Оснащены гидрозамками.

Резак универсальный РУ2080М предназначен для перекусывания и резания стальных прутков, труб, уголков, различных профилей, тросов и кабелей при проведении аварийно-спасательных работ в зонах чрезвычайных ситуаций, аварий на транспорте, катастроф, пожаров, стихийных бедствий, а также при строительных и монтажно-демонтажных работах в различных отраслях промышленности.

Требования технического регламента о требованиях пожарной безопасности к пожарному инструменту

Пожарный инструмент в зависимости от его функционального назначения должен обеспечивать выполнение:

  • работ по резке, подъему, перемещению и фиксации различных строительных конструкций;
  • работ по пробиванию отверстий и проемов, дроблению строительных конструкций и материалов;
  • работ по закупорке отверстий в трубах различного диаметра, заделке пробоин в емкостях и трубопроводах.

Ручной механизированный инструмент должен быть оснащен предохранительными устройствами, препятствующими случайному попаданию в подвижные механизмы частей тела человека или одежды. Органы управления механизированным пожарным инструментом должны быть снабжены указателями, исключающими неоднозначное толкование размещенной на них информации.

Конструкция механизированного и немеханизированного пожарных инструментов должна обеспечивать возможность быстрой замены рабочих элементов.

Конструкция стыковочных узлов пожарного инструмента должна обеспечивать быстрое и надежное их соединение вручную без применения ключей или другого слесарного инструмента.

Конструкция пожарного инструмента должна обеспечивать электробезопасность оператора при проведении аварийно-спасательных работ.

Требования правил охраны труда при работе с ручным пожарным инструментом

Пожарный инструмент и инвентарь (ломы, багры, крюки, лопаты, топоры, пилы) должны иметь форму и массу, отвечающие эргономическим требованиям, и отвечать требованиям технических условий и мерам безопасности, определенным НПБ.

Долговечность инструмента (инвентаря) и безопасность работы с ним обеспечивается содержанием в исправном состоянии и своевременным техническим обслуживанием. Пригодность инструмента (инвентаря) определяется наружным осмотром и испытанием. С целью предотвращения несчастных случаев при работе с инструментом (инвентарем) при его осмотре следует обращать внимание на качество насадки инструмента на ручки и чистоту рабочих поверхностей. Топоры, пилы, ножницы для резки металлических решеток должны храниться в чехлах.

Металлические части топоров и багров должны быть надежно насажены на рукоятки. Прочность насадки должна быть установлена в стандартных и технических условиях на инструменты конкретного вида. Деревянные рукоятки должны быть изготовлены из прочных пород древесины, не иметь признаков порчи, сучков, трещин и сколов. Запрещается красить деревянные поверхности инструмента и инвентаря.

Ознакомление с размещением инструмента на пожарных автомобилях

Размещение инструмента должно удовлетворять ряду требований:

Во-первых, часть оборудования необходимо размещать, по возможности, в кабине боевого расчета. Это необходимо для того, чтобы уже при следовании на пожар боевому расчету можно было готовиться к выполнению боевой задачи. К такому оборудованию относятся кислородно-изолирующий противогаз, электрофонари.

Во-вторых, размещение оборудования в отсеках кузова должно быть подчинено необходимости минимальных затрат времени на боевое развертывание.

Рис. 13. Размещение пожарного оборудования в кузовах и кабинах пожарной автоцистерны АЦ-40 (131)-137:

1 - огнетушитель ОУ-2; 2 - шоферский инструмент; 3 - ключ гаечный 41-50: 4 - пожарный рукав 77 мм; 5 - пожарный ствол СВП-4; 6 - пожарный рукав 0 6Ь мм; 7 - колонка пожарная; 8 - разветвление трехходовое: 9 - крюк; 10 - сетка всасывающая; 11 - зажим рукавный; 12 - головка переходная ГСП-50Х80; 13 - головка переходная ГСП-70Х80; 14 - пожарный ствол PC; 15 - пожарный ствол РСК; 16 - шланг для пенообразователя; 17 - напорный пожарный рукав льняной 51 мм; IS - напарный пожарный рукав 0 51 мм; 19 - водосборник

Литература:

  1. Учебник для высших образовательных учреждений МЧС России М.Д. Безбородько, С.Г. Цариченко, В.В. Роенко, Н.И. Ульянов, М.В. Алешков, А.В. Рожков, А.В. Плосконосов, С.А. Шкунов, В.М. Климовцов, С.П. Храмцов «Пожарная и аварийно-спасательная техника» Москва 2012.
  2. Техника пожарная. Инструмент для проведения специальных работ на пожарах. Общие технические требования. Методы испытаний Об утверждении Правил по охране труда в подразделениях федеральной противопожарной службы Государственной противопожарной службы

Машины, использующие жидкость в качестве рабочей среды. Подразделяются на насосы и гидродвигатели.

Насос – сообщает потоку жидкости механическую энергию, получая ее от приводного двигателя

Гидродвигатель - получает энергию от потока рабочей жидкости и преобразует ее в энергию движения выходного звена, передавая ее рабочим органам машины.

Если выходное звено получает вращательное движение, то такой гидродвигатель называют гидромотором , если поступательное, то силовым цилиндром .

По принципу действия гидромашины делят на объемные и динамические

Объемными называю гидромашины, рабочий процесс которых основан на попеременном заполнении рабочих камер жидкостью и вытеснении ее из этих камер.

Основной разновидностью динамических насосов являются лопастные

Лопастные машины имеют вращающееся рабочее колесо, снабженное лопастями.

Лопастные машины

Рабочим органом лопастной машины является вращающееся рабочее колесо, снабженное лопастями.

Энергия от рабочего колеса жидкости передается путем динамического взаимодействия лопастей колеса с обтекающей их жидкостью

В центробежном лопастном насосе жидкость под действием центробежных сил перемещается через рабочее колесо от центра к периферии.

Проточная часть насоса состоит из трех основных элементов - подвода 1 , рабочего колеса 2 и отвода 3 . По подводу жидкость подается в рабочее колесо из подводящего трубопровода. Рабочее колесо 2 передает жидкости энергию от приводного двигателя.

В осевом лопастном насосе жидкость перемещается в основном вдоль оси вращение рабочего колеса. Рабочее колесо осевого насоса похоже на винт корабля.

Оно состоит из втулки 1 , на которой закреплено несколько лопастей 2 . Отводом насоса служит осевой направляющий аппарат 3 , с помощью которого устраняется закрутка жидкости, и кинетическая энергия ее преобразуется в энергию давления. Осевые насосы применяют при больших подачах и малых давлениях.

В осевом насосе можно расширить диапазон рабочих подач и напоров, в котором насос работает, применив поворотные лопасти.

С изменением угла установки лопасти характеристика насоса сильно изменяется при незначительном снижений оптимального КПД

Движение жидкости в рабочем колесе центробежного насоса

Скорость абсолютного движения V (абсолютная скорость) равна геометрической сумме скорости W жидкости относительно рабочего колеса (относительной скорости)и окружной скорости U рабочего колеса (переносной скорости)

Угол между абсолютной V и переносной U скоростями жидкости;- угол между относительной скоростью W и отрицательным направлением переносной скорости U жидкости.

V U - проекция абсолютной скорости на направление окружной

Подача, напор, мощность насоса и КПД

Подачей насоса называется расход жидкости через напорный патрубок.

Напор Н представляет собой разность удельных энергий жидкости в сечении потока после насоса и перед ним. Это та удельная энергия, которую насос сообщает жидкости.

H Z Н Z В PН g P V 2 2 g V 2

Где индексы обозначают Н – напорный, В – всасывающий.

В геометрической интерпретации это высота, на которую жидкость способна подняться под действием статического давления и разности скоростей на входе в насос и выходе из него.

Мощностью насоса (мощностью, потребляемой насосом) называется энергия, подводимая к нему от двигателя за единицу времени.

Полезная мощность насоса N П мощность, сообщаемая насосом перекачиваемой жидкости.

Определяется по формуле: N П = gHQ .

Баланс энергии в лопастном насосе

Механические потери -- потери на трение в подшипниках, в уплотнениях вала и на трение наружной поверхности рабочих колес о жидкость.

Мощность, остающаяся за вычетом механических потерь, передается рабочим колесом жидкости. Ее принято называть гидравлической N Г .

Объемные потери.

Жидкость, выходящая из рабочего колеса в основном поступает в напорный патрубок насоса, и частично возвращается в подвод через зазор в уплотнении 1 между рабочим колесом и корпусом насоса.

Энергия жидкости, возвращающейся в подвод, теряется. Эти потери называются объемными.

Гидравлические потери

Расходуются на преодоление гидравлических сопротивлений подвода, рабочего колеса и отвода.

Г гидравлический КПД, учитывающий потери мощности на преодоление гидравлических сопротивлений в насосе;о объемный КПД, учитывающий потери мощности в насосе из за внутренних

утечек, перетекания жидкости через зазоры из полости с высоким давлением в полость с низким давлением;

мех механический КПД, учитывающий потери мощности в подшипниках, уплотнениях и трение наружной поверхности рабочего колеса о жидкость.

N N П

Основное уравнение лопастных насосов

Основное уравнение лопастных насосов было впервые выведено Эйлером.

Оно связывает напор насоса со скоростями движения жидкости, которые зависят от подачи и частоты вращения насоса, а также от геометрии рабочего колеса и подвода.

Теоретический напор, создаваемый центробежным насосом с бесконечно большим числом лопаток (z=), равен

H T g 1 u 2 2u u 1 1u

где u 2 и u 1 - окружные скорости рабочего колеса на выходе и на входе;

1U и 2U окружные составляющие абсолютных скоростей на выходе и входе в колесо.

Действительный напор центробежного насоса равен

H н г k z H Т

Здесь k - коэффициент влияния числа лопаток,

2sin 2

который можно оценить по следующей приближенной

Экспериментальная характеристика центробежного насоса

Характеристикой насоса называется зависимости напора, мощности, КПД и кавитационного запаса от подачи.

Кавитация и кавитационный запас в гидромашинах

Кавитацией называется нарушение сплошности потока жидкости, обусловленное появлением в ней пузырьков заполненных газом или паром. Кавитация возникает при понижении давления, в результате чего жидкость закипает или из нее выделяется растворенный газ. В большинстве случаев выделение газа не играет существенной роли.

В потоке жидкости падение давления обычно происходит в области повышенных скоростей. При движении жидкости в области повышенного давления происходит конденсация паров в пузырьке, его захлопывание, при котором частицы жидкости движутся внутрь пузырька и сталкиваются друг с другом.

Это приводит к мгновенному местному повышению давления, достигающему тысяч атмосфер. Имеет место эрозионное разрушение стенок каналов.

В лопастных насосах кавитация сопровождается падением подачи, напора, мощности и возникает на лопатке рабочего колеса вблизи ее входной кромки.

Давление здесь значительно ниже, чем давление во входном патрубке насоса, из- за местного возрастания скорости и гидравлических потерь в подводе.